# 프로그래밍 언어와 기계 학습의 만남 

허기홍<br>전산학부 / 프로그래밍 시스템 연구실<br>제 2회 KAIST PL 워크샵



Next-generation
Programming Systems



## PL vs ML

## $0 \rightarrow \lambda \rightarrow$ 里

- 논리 기반
- 엄밀함 (문법, 실행 의미, 타입 등)
- 증명 가능, 해석 가능
- 올바른 답을 내지만 오래 걸릴 수도
- 못 푸는 문제도 있다 (예: 결정불가능)
- 사칙 연산, 논리 증명 등 잘함 (직렬순차)

- 확률 기반
- 유연함 (모든 것이 숫자, 벡터)
- 증명과 해석이 어려움
- 그럴듯한 답을 빨리 내지만 틀릴 수도
- 못 푸는 문제는 없다 (정확도가 낮을 뿐)
- 그림 맞추기, 번역하기 등 잘함 (병렬동시)


## PL + ML?

## $\theta \rightarrow \lambda \rightarrow$ 里

- 논리 기반
- 엄밀함 른법, 실행 의미, 타입 등)

증명 가능 해석 가능
올바른 답응 내지만 오래 걸릴 수도

- 못 푸는 문제도 있다 (예: 결정불가능)
- 사칙 연산, 논리 증명 등 잘히 (직렬순차)

- 확률 기반
- 유연함 (뵤든 것이 숫자, 벡터)
- 증명과 해석이 어려움
- 그럴듯한 답을 빨리 내자만 틀릴 수도
- 못 푸는 문제는 없다 청확도가 낮을 뿐)
- 그림 맞추기, 번역하기 등 잘흠 병렬동시)


## 몇 가지 경험과 사례

- 프로그램 분석
- 유연한 프로그램 분석을 위한 지도 학습, 강화 학습
- 편리한 프로그램 분석을 위한 베이지안 추론
- 프로그램 변환과 합성
- 빠른 합성을 위한 언어 모델
- 빠른 변환을 위한 강화 학습



## 프로그램 정적 분석

- SW 의 동작을 자동으로 예측하는 일반적이고 체계적인 방법
- 예측: 실행하기 전에 미리 (정적)
- 자동: 소프트웨어를 분석하는 소프트웨어 ("분석기")
- 일반적: 언어와 성질에 국한되지 않음
- 체계적 : 요약 해석 (abstract interpretation) 이라는 이론에 기반
- 응용: 오류 검출, 검증, 보안, 코드 유지보수, 코드 최적화 등


## 예제

```
static char *curfinal = "HDACB FE"; curfinal: buffer of size 10
keysym = read_from_input(); keysym:any integer
if ((KeySym)(keysym) >= 0xFF9987)
{
        unparseputc((char)(keysym - 0xFF91 + 'P'), pty);
        key = 1;
else if (keysym >= 0)
if (keysym < 16)], keysym:[0,15]
if (read_from_input())
            {
        SAFE
            if (keysym >= 10) return;
        curfina[[keysym]= 1;
            else
        Buffer-{}\begin{array}{l}{\mathrm{ Bu_ curfinal[keysym]] = 2; }\begin{array}{c}{\mathrm{ size of curfinal: [10, 10]}}\\{\mathrm{ keysym: [0, 15]}}\end{array}}}
        }
        if (keysym<10)}< keysym: [0, 9]
        unparseput(curfinal[keysym], pty);
    }

\section*{프로그램 분석의 고질적 문제}


\footnotetext{
"... can be difficult to do without introducing large numbers of false positives, or scaling performance exponentially poorly. In this case, balancing these ... caused us to miss the defect."
- On Detecting Heartbleed with Static Analysis, (Coverity, 2014)
}

\section*{전통적인 프로그램 분석}


\section*{우리의 목표}


\section*{전통적인 프로그램 분석의 문제점}


\section*{전통적인 프로그램 분석의 문제점}

1. Inflexible

\section*{전통적인 프로그램 분석의 문제점}


\section*{전통적인 프로그램 분석의 문제점}

3. Narrow-sighted

\section*{우리의 목표}


\section*{ML 을 이용한 정적 분석}


\section*{세 가지 소원}



Continuous
Program Analysis

\title{
Adaptive Program Analysis [SAS'16, OOPSLA'17, ICSE'17, ICSE'19]
}


\section*{유연한 정적 분석}


Optimal Precision
Optimal Cost

High Precision
High Cost

Sensitivity (knob)

\section*{정적 분석기 길들이기}


\section*{FAQ and How to Deal with Common False Positives}
1. How do I tell the analyzer that I do not want the bug_beingreported here since my custom error handler will safely end the execution before the bug is reached?
2. The analyzer reports a null dereference, but I know that the pointer is never null. How can I tell the analyzer that a pointer can never be null?
3. How do I tell the static analyzer that I don't care about a specific dead store?
4. How do I tell the static analyzer that I don't care about a specific unused instance variable in Objective C?
5. How do I tell the static analyzer that I don't care about a specific unlocalized string?
6. How do I tell the analyzer that my instance variable does not need to be released in -dealloc under Manual Retain/Release?
7. How do I decide whether a method's return type should be_Nullable or_Nonnull?
8. How do I tell the analyzer that I am intentionally violating nullability?
9. The analyzer assumes that a loop body is never entered. How can I tell it that the loop body will be entered at least once?
10. How can I suppress a specific analyzer warning?
11. How can I selectively exclude code the analyzer examines?

\section*{세상에 나쁜 정적 분석은 없다}



\section*{여러 사례}
\begin{tabular}{|ccccc}
\hline \begin{tabular}{c} 
Abstraction \\
(Knob)
\end{tabular} & Cost & Online/Offline & Method & Result \\
\hline Variable Relationship & Running Time & Offline & \begin{tabular}{c} 
Supervised \\
Learning
\end{tabular} & [SAS'16] \\
\hline \begin{tabular}{c} 
Statement Order \\
Variable Relationship
\end{tabular} & Running Time & Offline & \begin{tabular}{c} 
Supervised \\
Learning
\end{tabular} & [OOPSLA'17] \\
\hline \begin{tabular}{c} 
Loop Unrolling \\
Library Call Handling
\end{tabular} & Missed Bugs & Offline & \begin{tabular}{c} 
Supervised \\
Learning
\end{tabular} & [ICSE'17] \\
\hline Statement Order & Memory Consumption & Online & \begin{tabular}{c} 
Reinforcement \\
Learning
\end{tabular} & [ICSE'19] \\
\hline
\end{tabular}

\section*{선별적으로 안전한 분석}
- 정확도를 높이기 위해 안전성 (soundness) 을 포기하는 여러 전략
- 예: 유한번 순환문 풀기, 복잡한 라이브러리 함수 무시
\[
\text { while(e) }\{C\} \quad \operatorname{if}(e)\{C\} \quad A ; l i b() ; B ; \quad A ; B \text {; }
\]


Uniformly Sound


Selectively Unsound


Uniformly Unsound

\section*{예제}
- 인터벌 도메인을 이용한 버퍼 오버런 분석기: 모든 순환문을 안전하게 분석


\section*{예제}
- 인터벌 도메인을 이용한 버퍼 오버런 분석기: 모든 순환문을 안전하지 않게 분석
```

str = "hello world";
i = 0;
if (str[i]) // buffer access 1
skip; > i:[0,0]
size = positive_input();
i = 0;
if (i < size)
skip;
str[i] = ... // buffer access 2 湭

```

\section*{예제}
- 인터벌 도메인을 이용한 버퍼 오버런 분석기: 필요할 때 적절히 안전성을 포기하는 분석
```

str = "hello world";
i = 0;
if (str[i]) // buffer access 1
skip; 子 i:[0,0]
size = positive_input();
for (i = 0; i < size; i++)
skip;
str[i] = ... // buffer access 2 息

```

\section*{문제 정의}
\[
F \in \operatorname{Pgm} \times \underline{\Pi} \rightarrow \mathcal{A}
\]
- 목표: 안전성 포기 대상의 집합 \(\pi \in \Pi\) 찾기
- 최대한 많은 오류를 찾아내면서, 거짓 경보는 최소화
- 예: 순환문 \(\left(\Pi=2^{L o o p}\right)\), 라이브러리 호출 \(\left(\Pi=2^{L i b}\right)\)
- 분석: 해당 집합의 원소들에 안전성 포기 전략을 적용

\section*{조감도}


Inferring Harmless Unsoundness

\section*{학습 데이터 수집}
- 오류 지점이 알려져 있는 프로그램 집합 + 안전성을 조절할 수 있는 분석기
- 안전성 포기 전략이 적용되었을 때 1) 거짓 경보는 줄어들고, 2) 오류는 하나도 놓치지 않는 대상


\section*{특징 벡터와 학습}
- 각 데이터를 특징 벡터 (feature vector) 로 표현
\[
\begin{gathered}
f(x)=\left\langle f_{1}(x), f_{2}(x), \ldots, f_{n}(x)>\right. \\
f\left(l \text { loop }_{1}\right)=\langle 1,0, \ldots, 1> \\
f\left(l o o p_{2}\right)=\langle 0,1, \ldots, 1> \\
f\left(l i b_{1}\right)=\langle 0,1, \ldots, 0> \\
f\left(l i b_{2}\right)=\langle 1,1, \ldots, 1>
\end{gathered}
\]
- 데이터를 토대로 분류기 (classifier) 를 학습
- 널리 알려진 학습 알고리즘 이용 (예: SVM)

\title{
순환문의 특징 벡터
}
- 22 가지 구문적, 의미적 특징
\begin{tabular}{rlrl}
\hline Feature & Property & Type & Description \\
Null & Syntactic & Binary & Whether the loop condition contains nulls or not \\
Const & Syntactic & Binary & Whether the loop condition contains constants or not \\
Array & Syntactic & Binary & Whether the loop condition contains array accesses or not \\
Conjunction & Syntactic & Binary & Whether the loop condition contains \&\& or not \\
IdxSingle & Syntactic & Binary & Whether the loop condition contains an index for a single array in the loop \\
IdxMulti & Syntactic & Binary & Whether the loop condition contains an index for multiple arrays in the loop \\
IdxOutside & Syntactic & Binary & Whether the loop condition contains an index for an array outside of the loop \\
Initldx & Syntactic & Binary & Whether an index is initialized before the loop \\
Exit & Syntactic & Numeric & The (normalized) number of exits in the loop \\
Size & Syntactic & Numeric & The (normalized) size of the loop \\
ArrayAccess & Syntactic & Numeric & The (normalized) number of array accesses in the loop \\
ArithInc & Syntactic & Numeric & The (normalized) number of arithmetic increments in the loop \\
PointerInc & Syntactic & Numeric & The (normalized) number of pointer increments in the loop \\
Prune & Semantic & Binary & Whether the loop condition prunes the abstract state or not \\
Input & Semantic & Binary & Whether the loop condition is determined by external inputs \\
GVar & Semantic & Binary & Whether global variables are accessed in the loop condition \\
FinInterval & Semantic & Binary & Whether a variable has a finite interval value in the loop condition \\
FinArray & Semantic & Binary & Whether a variable has a finite size of array in the loop condition \\
FinString & Semantic & Binary & Whether a variable has a finite string in the loop condition \\
LCSize & Semantic & Binary & Whether a variable has an array of which the size is a left-closed interval \\
LCOffset & Semantic & Binary & Whether a variable has an array of which the offset is a left-closed interval \\
\#AbsLoc & Semantic & Numeric & The (normalized) number of abstract locations accessed in the loop
\end{tabular}

\section*{라이브러리 호출의 특징 벡터}
- 15 가지 구문적, 의미적 특징
\begin{tabular}{rrrl}
\hline Feature & Property & Type & Description \\
\hline Const & Syntactic & Binary & Whether the parameters contain constants or not \\
Void & Syntactic & Binary & Whether the return type is void or not \\
Int & Syntactic & Binary & Whether the return type is int or not \\
CString & Syntactic & Binary & Whether the function is declared in string.h or not \\
InsideLoop & Syntactic & Binary & Whether the function is called in a loop or not \\
\#Args & Syntactic & Numeric & The (normalized) number of arguments \\
DefParam & Semantic & Binary & Whether a parameter are defined in a loop or not \\
UseRet & Semantic & Binary & Whether the return value is used in a loop or not \\
UptParam & Semantic & Binary & Whether a parameter is update via the library call \\
Escape & Semantic & Binary & Whether the return value escapes the caller \\
GVar & Semantic & Binary & Whether a parameters points to a global variable \\
Input & Semantic & Binary & Whether a parameters are determined by external inputs \\
FinInterval & Semantic & Binary & Whether a parameter have a finite interval value \\
\#AbsLoc & Semantic & Numeric & The (normalized) number of abstract locations accessed in the arguments \\
\#ArgString & Semantic & Numeric & The (normalized) number of string arguments \\
\hline
\end{tabular}

\section*{성능}
- 두 가지 분석
- 정수 구간 (interval) 분석: 138 버퍼 오버런 오류 / 23 프로그램
- 오염 (taint) 분석: 106 포맷 스트링 오류 / 13 프로그램


\section*{여러 사례}
\begin{tabular}{|ccccc}
\hline \begin{tabular}{c} 
Abstraction \\
(Knob)
\end{tabular} & Cost & Online/Offline & Method & Result \\
\hline Variable Relationship & Running Time & Offline & \begin{tabular}{c} 
Supervised \\
Learning
\end{tabular} & [SAS'16] \\
\hline \begin{tabular}{c} 
Statement Order \\
Variable Relationship
\end{tabular} & Running Time & Offline & \begin{tabular}{c} 
Supervised \\
Learning
\end{tabular} & [OOPSLA'17] \\
\hline \begin{tabular}{c} 
Loop Unrolling \\
Library Call Handling
\end{tabular} & Missed Bugs & Offline & \begin{tabular}{c} 
Supervised \\
Learning
\end{tabular} & [ICSE'17] \\
\hline Statement Order & Memory Consumption & Online & \begin{tabular}{c} 
Reinforcement \\
Learning
\end{tabular} & [ICSE'19] \\
\hline
\end{tabular}

\section*{어제, 오늘 그리고}


\section*{분석기 사용자의 어려움}
- 분석기 동작을 예측하기가 상당히 어려움
- 단순한 구문적 특징 (예: 소스 코드 크기) 으로는 예측하기 어려움
- 복잡한 의미 구조가 결정하므로 분석 전문가가 아니면 이해하기 어려움
\begin{tabular}{ccc}
\begin{tabular}{c} 
Sensitivity: \(0 \%\) \\
vim60 \\
\((227 K L O C)\)
\end{tabular} & \begin{tabular}{c} 
Sensitivity: \(0 \%\) \\
emacs-26.0.91 \\
\((503 K L O C)\)
\end{tabular} & \(<\)\begin{tabular}{c} 
Sensitivity: \(5 \%\) \\
emacs-26.0.91 \\
\((503 K L O C)\)
\end{tabular} \\
Memory: \\
51 GB
\end{tabular}\(>\)\begin{tabular}{c} 
Memory: \\
18 GB
\end{tabular}\(\ll\)\begin{tabular}{l} 
Memory: \\
\(>128 \mathrm{~GB}\)
\end{tabular}

\section*{자원 소모량을 스스로 고려하는 정적 분석}
- 주어진 자원 한도 내에서 가능한 최대 정확도를 자동으로 달성하는 기술
- 예: 128GB 메모리


\section*{요약 정도 조절 장치}
- Flow-sensitivity: 구문의 순서를 요약하는 정도

\section*{Flow-sensitive}
\[
\begin{aligned}
& 1: x=0 ; \\
& 2: y=1 ; \\
& 3: x=1 ; \\
& 4: y=0 ;
\end{aligned}
\]

Flow-insensitive

\[
\text { 4: } y=0 ;
\]


\section*{예제}
- Partially flow-sensitive interval analysis (budget: 10 intervals)
```

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

```

\section*{예제}
- Partially flow-sensitive interval analysis (budget: 10 intervals)
\[
\begin{aligned}
& \text { 1: } x=0 ; y=0 ; z=1 ; v=\text { input(); } w=\text { input(); } \\
& \text { 2: } x=z ; \\
& \text { 3: z = z + 1; } \\
& \text { 4: } y=x ; \\
& \text { 5: assert } \mathrm{y}>0 \text { ); // Query } 1 \text { (hold) } \\
& \text { 6: assert(z > 0); // Query } 2 \text { (hold) } \\
& \text { 7: assert(v == w); // Query } 3 \text { (may fail) } \\
& 3 \text { Intervals }
\end{aligned}
\]

\section*{예제}
- Partially flow-sensitive interval analysis (budget: 10 intervals)
```

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

```
\begin{tabular}{cc}
\hline Line & Flow-Sensitive Abstract State \\
\hline 1 & \(\{x=[0,0], y=[0,0], z=[1,1], v=T, w=T\}\) \\
2 & \(\{x=[1,1], y=[0,0], z=[1,1], v=T, w=T\}\) \\
6 & 6 Intervals
\end{tabular}

\section*{예제}
- Partially flow-sensitive interval analysis (budget: 10 intervals)
```

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

```
\begin{tabular}{cc}
\hline Line & Flow-Sensitive Abstract State \\
\hline 1 & \(\{\mathrm{x}=[0,0], \mathrm{y}=[0,0], \mathrm{z}=[1,1], \mathrm{v}=\mathrm{T}, \mathrm{w}=\mathrm{T}\}\) \\
2 & \(\{\mathrm{x}=[1,1], \mathrm{y}=[0,0], \mathrm{z}=[1,1], \mathrm{v}=\mathrm{T}, \mathrm{w}=\mathrm{T}\}\) \\
3 & \(\{\mathrm{x}=[1,1], \mathrm{y}=[0,0], \mathrm{z}=[2,2], \mathrm{v}=\mathrm{T}, \mathrm{w}=\mathrm{T}\}\) \\
4 & \(\{\mathrm{x}=[1,1], \mathrm{y}=[1,1], \mathrm{z}=[2,2], \mathrm{v}=\mathrm{T}, \mathrm{w}=\mathrm{T}\}\) \\
\hline
\end{tabular}

12 Intervals

\section*{예제}
- Partially flow-sensitive interval analysis (budget: 10 intervals)
```

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

```
\begin{tabular}{cc} 
Line & Flow-Insensitive Abstract State \\
\(*\) & \(\{x=[0,+\infty], y=[0,+\infty], z=[1,+\infty], v=T, w=T\}\) \\
& 3 Intervals
\end{tabular}

\section*{유연한 정적 분석}
- 분석 도중에 요약 정도를 스스로 조절
- 여러 분석 데이터를 기반으로 확률 모델과 조절 장치를 스스로 학습


\section*{변수에 관한 확률 모델}
- Model \(M\) : Variable \(\rightarrow[0,1]\)
- Importance of each variable in terms of flow-sensitivity
- Learned using Bayesian Optimization
- represent variables as feature vectors and learn weights of features
```

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)

$$
M(x)>M(y)>M(z)>M(v)>M(w)
$$

```

\section*{요약 조절 장치}
- 조절 함수 \(\pi: \mathbf{F} \rightarrow \operatorname{Pr}(\mathrm{A})\) 이고 \(\mathrm{A}=\{0, \cdots, 100\}\)
- 입력: 현재 상태를 나타내는 특징 벡터
- 예: 메모리 사용량, 분석 진행도
- 출력: 지금부터 몇 \% 변수를 순서 무관하게 분석할지에 관한 확률 분포
- 강화 학습 방법을 이용하여 학습

\section*{예제}
- Partially flow-sensitive interval analysis (budget: 10 intervals)
```

1: x = 0; y = 0; z = 1; v = input(); w = input();
2: x = z;
3: z = z + 1;
4: y = x;
5: assert(y > 0); // Query 1 (hold)
6: assert(z > 0); // Query 2 (hold)
7: assert(v == w); // Query 3 (may fail)
Model: M(x)>M(y)>M(z)>M(v)>M(w)

```

\section*{예제}
- Partially flow-sensitive interval analysis (budget: 10 intervals)
\[
\begin{aligned}
& \text { 1: } \mathrm{x}=0 \text {; y = 0; z = } 1 \text {; } \mathrm{v}=\text { input(); } \mathrm{w}=\text { input(); } \\
& \text { 2: } \mathrm{x}=\mathrm{z} \text {; } \\
& \text { 3: z = z + 1; } \\
& \text { 4: } y=x \text {; } \\
& \text { 5: assert(y > 0); // Query } 1 \text { (hold) } \\
& \text { 6: assert(z > 0); // Query } 2 \text { (hold) } \\
& \text { 7: assert(v == w); // Query } 3 \text { (may fail) } \\
& \text { Model: } M(x)>M(y)>M(z)>M(v)>M(w)
\end{aligned}
\]

\section*{예제}
- Partially flow-sensitive interval analysis (budget: 10 intervals)
\[
\begin{aligned}
& \text { 1: } \mathrm{x}=0 \text {; y = 0; z = } 1 \text {; } \mathrm{v}=\text { input(); } \mathrm{w}=\text { input(); } \\
& \text { 2: } \mathrm{x}=\mathrm{z} \text {; } \\
& \text { 3: z = z + 1; } \\
& \text { 4: y = } x \text {; } \\
& \text { 5: assert (y > 0); // Query } 1 \text { (hold) } \\
& \text { 6: assert(z > 0); // Query } 2 \text { (hold) } \\
& \text { 7: assert(v == w); // Query } 3 \text { (may fail) } \\
& \text { Model: } M(x)>M(y)>M(z)>M(v)>M(w) \\
& 6 \text { Intervals }
\end{aligned}
\]

\section*{예제}
- Partially flow-sensitive interval analysis (budget: 10 intervals)
\[
\begin{aligned}
& \text { 1: } x=0 ; y=0 ; z=1 ; \text { v }=\text { input(); } w=\text { input(); } \\
& \text { 2: } x=2 ; \\
& \text { 3: } \mathrm{z}=\mathrm{z}+1 \text {; } \\
& \text { 4: y = x; } \\
& \text { 5: assert(y > 0); // Query } 1 \text { (hold) } \\
& \text { 6: assert(z > 0); // Query } 2 \text { (hold) } \\
& \text { 7: assert(v == w); // Query } 3 \text { (may fail) } \\
& \text { Model: } M(x)>M(y)>M(z)>M(v)>M(w)
\end{aligned}
\]

\section*{예제}
- Partially flow-sensitive interval analysis (budget: 10 intervals)
\[
\begin{aligned}
& \text { 1: } x=0 ; y=0 ; z=1 ; \text { v }=\text { input(); } w=\text { input(); } \\
& \text { 2: } x=2 ; \\
& \text { 3: } z=z+1 \text {; } \\
& \text { 4: y = } \mathrm{x} \text {; } \\
& \text { 5: assert (y > 0); // Query } 1 \text { (hold) } \\
& \text { 6: assert(z > 0); // Query } 2 \text { (hold) } \\
& \text { 7: assert(v == w); // Query } 3 \text { (may fail) } \\
& \text { Model: } M(x)>M(y) \geq M(z)>M(1)>M(w)
\end{aligned}
\]

\section*{예제}
- Partially flow-sensitive interval analysis (budget: 10 intervals)
\[
\begin{aligned}
& \text { 1: } x=0 ; y=0 ; z=1 ; \text { v = input(); w = input(); } \\
& \text { 2: } x=2 ; \\
& \text { 3: } z=z+1 \text {; } \\
& \text { 4: } y=x \text {; } \\
& \text { 5: assert(y > 0); // Query } 1 \text { (hold) } \\
& \text { 6: assert(z > 0); // Query } 2 \text { (hold) } \\
& \text { 7: assert(v == w); // Query } 3 \text { (may fail) } \\
& \text { Model: } M(x)>M(y) \geqslant M(z)>M(v)>M(w)
\end{aligned}
\]

\section*{요약 조절 장치 학습}
- 조절 함수 \(\pi: \mathrm{F} \rightarrow \operatorname{Pr}(\mathrm{A})\) 이고 \(\mathrm{A}=\{0, \cdots, 100\}\)
- 입력: 현재 상태를 나타내는 특징 벡터
- 예: 메모리 사용량, 분석 진행도
- 출력: 지금부터 몇 \% 변수를 순서 무관하게 분석할지에 관한 확률 분포
- Value function \(Q: \mathbf{F} \times \mathbf{A} \rightarrow[0,1]:\) 각 특징 벡터와 행동에 관한 점수
- \(\pi_{Q}(\mathrm{f})(\mathrm{a})=\frac{Q(f, a)}{\sum_{a^{\prime} \in A} Q\left(f, a^{\prime}\right)}\)

\section*{Value Function}
\[
Q: \mathbf{F} \times \mathbf{A} \rightarrow[0,1]
\]
- 특징 요약 함수 \(\boldsymbol{\alpha}:\) State \(\rightarrow \mathbf{F}\) 이고 \(\mathbf{F}=[0,1]^{4}\)
1. The inverse of memory budget
2. Current memory consumption divided by the total budget
3. Current lattice position divided by the lattice height
4. Current workset size divided by the total workset size
- 보상 함수: FI 와 FS 사이에서 표준화한 상대적 알람 개수
- 0 if \#alarms = \#flow-insensitive alarms
- 1 if \#alarms = \#flow-sensitive alarms

\section*{학습 알고리즘}
- 미리 제공된 학습 데이터와 강화 학습 알고리즘 이용
1. Initialize \(\pi\) with a random policy

\section*{학습 알고리즘}
- 미리 제공된 학습 데이터와 강화 학습 알고리즘 이용


\section*{학습 알고리즘}
- 미리 제공된 학습 데이터와 강화 학습 알고리즘 이용
3. Collect all state-action pairs and the reward

\[
\mathrm{D}_{1}=\left\{\left(<\alpha\left(\mathrm{s}_{0}\right), \mathrm{a}_{0}>, 0.7\right),\left(<\alpha\left(\mathrm{s}_{1}\right), \mathrm{a}_{1}>, 0.7\right),\left(<\alpha\left(\mathrm{s}_{2}\right), \mathrm{a}_{2}>, 0.7\right)\right\}
\]

\section*{학습 알고리즘}
- 미리 제공된 학습 데이터와 강화 학습 알고리즘 이용
4. Learn \(Q\) using \(D_{1}\) with a supervised learning algorithm

\[
\mathbf{Q}=\text { SupervisedLearning }\left(D_{1}\right)
\]

\section*{학습 알고리즘}
- 미리 제공된 학습 데이터와 강화 학습 알고리즘 이용


\section*{학습 알고리즘}
- 미리 제공된 학습 데이터와 강화 학습 알고리즘 이용
6. Run the analysis with refined \(\pi\)


\section*{학습 알고리즘}
- 미리 제공된 학습 데이터와 강화 학습 알고리즘 이용


\section*{학습 알고리즘}
- 미리 제공된 학습 데이터와 강화 학습 알고리즘 이용
8. Refine \(Q\) using \(D_{2}\) with a supervised learning algorithm


\section*{학습 알고리즘}
- 미리 제공된 학습 데이터와 강화 학습 알고리즘 이용


\section*{학습 진행}


\section*{효과}

\section*{기존 방식* \\ (10\% flow-sensitivity)}
- \(3 / 8\) run out of memory (128GB)
- \(27 \%\) of buffer overrun alarms \(\downarrow\)
- \(30 \%\) of null dereference alarms \(\downarrow\)

\section*{자동 조절 장치 기반}
- 0/8 run out of memory (64 / 128GB)
- 28-32\% of buffer overrun alarms \(\downarrow\)
- 33-41\% of null dereference alarms \(\downarrow\)

\section*{한계점}
- 각 대상의 특징 (feature) 을 수동으로 정의해야 함


\section*{특징 자동 생성}
- 핵심 아이디어: 특징을 나타내는 프로그램
- 왜 특정 분석 기술 (flow-sensitivity, relational analysis, etc) 이 먹히는가?
- 특징 프로그램 생성: 이미 존재하는 프로그램 축약기 이용


\section*{특징 추출}
- 특징 프로그램과 대상 프로그램을 그래프로 표현하여 포함관계를 계산
- 그래프: 요약된 데이터 흐름을 표현

Feature


\section*{특징 추출}
- 특징 프로그램과 대상 프로그램을 그래프로 표현하여 포함관계를 계산
- 그래프: 요약된 데이터 흐름을 표현


Node \(_{F} \subseteq\) Node \(_{I} \wedge E d g e_{F} \subseteq E d g e_{I}^{*}\)

\section*{Outline}


\section*{Outline}

\section*{Bingo: Interactive Alarm Ranking System [PLDI'18]}


\section*{문제점}


\section*{목표}


\section*{상호작용 시스템 (다른 분야)}


\section*{반응형 오류 보고}


\section*{FtpServer}

152KLOC
75 Datarace Bugs 522 Total Alarms

Rank 522

\section*{반응형 오류 보고}


\section*{FtpServer}

152KLOC
75 Datarace Bugs 522 Total Alarms

Rank 522

\section*{반응형 오류 보고}


\title{
FtpServer
}

152KLOC
75 Datarace Bugs 522 Total Alarms

\section*{반응형 오류 보고}


\section*{FtpServer}

152KLOC
75 Datarace Bugs 522 Total Alarms

\section*{반응형 오류 보고}


Rank 522


FtpServer
152KLOC 75 Datarace Bugs 522 Total Alarms

\section*{반응형 오류 보고}


Rank 522

\section*{반응형 오류 보고}


\section*{핵심 기술}

\section*{인간-분석 상호 작용 + 베이지안 추론 (Bayesian inference)}


\section*{분석 예제: Datarace}
```

Analysis Inputs:
Next(p1, p2), Alias(p1, p2), Unguarded(p1, p})
Analysis Outputs:
Parallel(p
Analysis Rules:
\mp@subsup{r}{1}{\prime}: Parallel( }\mp@subsup{p}{1}{},\mp@subsup{p}{3}{}):- Parallel( (p1, p2), Next(p2, p3), Unguarded( (p1, p3)
\mp@subsup{r}{2}{\prime}
r_3: Race( }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}):-\operatorname{Parallel}(\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}),\operatorname{Alias}(\mp@subsup{p}{1}{},\mp@subsup{p}{2}{})

```

\section*{분석 예제: Datarace}
\(p_{i}\) is a program point

\section*{Analysis/Inputs:}
\(\operatorname{Next}\left(p_{1}, p_{2}\right), \operatorname{Alias}\left(p_{1}, p_{2}\right), \operatorname{Unguarded}\left(p_{1}, p_{2}\right)\).

Program point \(p_{2}\) is
\(p_{1}\) and \(p_{2}\) may access
\(p_{1}\) and \(p_{2}\) are not guarded by
the same lock
an immediate successor of \(p_{1}\), the same memory location

\section*{Analysis Rules:}
\(\mathbf{r}_{1}: \quad \operatorname{Parallel}\left(p_{1}, p_{3}\right):-\operatorname{Parallel}\left(p_{1}, p_{2}\right), \operatorname{Next}\left(p_{2}, p_{3}\right), \operatorname{Unguarded}\left(p_{1}, p_{3}\right)\).
\(\mathbf{r}_{2}: \quad \operatorname{Parallel}\left(p_{1}, p_{2}\right):-\operatorname{Parallel}\left(p_{2}, p_{1}\right)\).
\(\mathbf{r}_{3}: \quad \operatorname{Race}\left(p_{1}, p_{2}\right):-\operatorname{Parallel}\left(p_{1}, p_{2}\right), \operatorname{Alias}\left(p_{1}, p_{2}\right)\).

\section*{분석 예제: Datarace}


\section*{분석 예제: Datarace}

\section*{Analysis Inputs:}
\(\operatorname{Next}\left(p_{1}, p_{2}\right), \operatorname{Alias}\left(p_{1}, p_{2}\right), \operatorname{Unguarded}\left(p_{1}, p_{2}\right)\).
Analysis Outputs:
Parallel \(\left(p_{1}, p_{2}\right)\), Race \(\left(p_{1}, p_{2}\right)\)

\section*{Analysis Rules:}
\(\mathbf{r}_{1}: \quad \operatorname{Parallel}\left(p_{1}, p_{3}\right):-\operatorname{Parallel}\left(p_{1}, p_{2}\right), \operatorname{Next}\left(p_{2}, p_{3}\right), \operatorname{Unguarded}\left(p_{1}, p_{3}\right)\).
\(\mathbf{r}_{2}: \quad \operatorname{Parallel}\left(p_{1}, p_{2}\right):-\operatorname{Parallel}\left(p_{2}, p_{1}\right)\).
\(\mathbf{r}_{3}: \quad \operatorname{Race}\left(p_{1}, p_{2}\right):-\operatorname{Parallel}\left(p_{1}, p_{2}\right)\), \(\operatorname{Alias}\left(p_{1}, p_{2}\right)\).

Thread 1
Thread 2
\(\mathrm{x}=\mathrm{y}+\mathrm{1} ; / / L_{1}\)
\(\ldots\)
```

z = y +"'1; // L L2
x = z + 1; // L_ <

```

\section*{분석 예제: Datarace}


\section*{분석 예제: Datarace}

\section*{Analysis Inputs:}
\(\operatorname{Next}\left(p_{1}, p_{2}\right), \operatorname{Alias}\left(p_{1}, p_{2}\right), \operatorname{Unguarded}\left(p_{1}, p_{2}\right)\).

\section*{Analysis Outputs:}

Parallel \(\left(p_{1}, p_{2}\right)\), Race \(\left(p_{1}, p_{2}\right)\)

\section*{Analysis Rules:}
\(r_{1}:\) Parallel \(\left(p_{1}, p_{3}\right)\) - - Parallel \(\left(p_{1}, p_{2}\right), \operatorname{Next}\left(p_{2}, p_{3}\right)\), Unquarded \(\left(p_{1}, p_{3}\right)\)
\(\mathbf{r}_{2}: \quad\) Parallel \(\left(p_{1}, p_{2}\right):-\operatorname{Parallel}\left(p_{2}, p_{1}\right)\).



\section*{분석 예제: Datarace}
Analysis Inputs:
\(\operatorname{Next}\left(p_{1}, p_{2}\right), \operatorname{Alias}\left(p_{1}, p_{2}\right), \operatorname{Unguarded}\left(p_{1}, p_{2}\right)\).

\section*{Analysis Outputs:}
\(\operatorname{Parallel}\left(p_{1}, p_{2}\right)\), Race \(\left(p_{1}, p_{2}\right)\)

\section*{Analysis Rules:}
\(\mathbf{r}_{1}: \quad \operatorname{Parallel}\left(p_{1}, p_{3}\right):-\operatorname{Parallel}\left(p_{1}, p_{2}\right), \operatorname{Next}\left(p_{2}, p_{3}\right), \operatorname{Unguarded}\left(p_{1}, p_{3}\right)\).
\(\mathbf{r}_{2}: \quad\) Parallel \(\left(p_{1}, p_{2}\right)\) : - Parallel \(\left(p_{2}, p_{1}\right)\).
\(\mathbf{r}_{3}: \quad \operatorname{Race}\left(p_{1}, p_{2}\right):-\operatorname{Parallel}\left(p_{1}, p_{2}\right)\), \(\operatorname{Alias}\left(p_{1}, p_{2}\right)\).

Thread 1
\begin{tabular}{c}
\(\ldots=\mathrm{y}+1 ; / / L_{1}\) \\
\(\mathrm{x}=\mathrm{y}\) \\
\hline
\end{tabular}

Thread 2
\[
\begin{aligned}
& z=y+\cdots ; / / L_{2} \\
& x=z+1 ; / / L_{3}
\end{aligned}
\]

Derivation


\section*{예제 프로그램}
```

public class RequestHandler {
private FtpRequest request;
public FtpRequest getRequest() {
return request; //Lo
}
public void close() {
synchronized (this) { //L1
if (isClosed) return; //L2
isClosed = true; //L3
}
controlSocket.close(); //L4
controlSocket = null; //L5
request.clear(); //L6
request = null; //LT
}
}

```

\section*{Analysis Rules:}
\(\mathbf{r}_{1}: \quad \mathrm{P}\left(p_{1}, p_{3}\right):-\mathrm{P}\left(p_{1}, p_{2}\right), \mathrm{N}\left(p_{2}, p_{3}\right), \mathrm{U}\left(p_{1}, p_{3}\right)\).
\(\mathbf{r}_{2}: \quad \mathrm{P}\left(p_{1}, p_{2}\right):-\mathrm{P}\left(p_{2}, p_{1}\right)\).
\(\mathbf{r}_{3}: \quad \mathrm{R}\left(p_{1}, p_{2}\right):-\mathrm{P}\left(p_{1}, p_{2}\right), \mathrm{A}\left(p_{1}, p_{2}\right)\).

\section*{예제 프로그램}


\section*{예제 프로그램}
```

public class RequestHandler {
private FtpRequest request;
public FtpRequest getRequest() {
return request; //L0
}
public void close() {
synchronized (this) { //L1
if (isClosed) return; //L2
isClosed = true; //L3
}

```


\section*{정적 분석}

\section*{Program}
```

controlSocket.close(); //L4
controlSocket = null; //L5
request.clear(); //L6
request = null;
//L7

```

\section*{Analysis Rules}
```

\mp@subsup{\mathbf{r}}{1}{\prime}: P(\mp@subsup{p}{1}{},\mp@subsup{p}{3}{}):- P(\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}),N(\mp@subsup{p}{2}{},\mp@subsup{p}{3}{}),\textrm{U}(\mp@subsup{p}{1}{},\mp@subsup{p}{3}{}).
\mp@subsup{r}{2}{}
r3: R(p1, p2):- P(p, p},\mp@subsup{p}{2}{}),\textrm{A}(\mp@subsup{p}{1}{},\mp@subsup{p}{2}{})

```

\section*{정적 분석}

\section*{Program}
```

controlSocket.close(); //L4
controlSocket = null; //L5
request.clear(); //L6
request = null;
//L7

```

Derivation Graph
\(\mathrm{P}(4,4) \quad \mathrm{N}(4,5) \quad \mathrm{U}(4,5)\)
\(A(4,5)\)
\(N(5,6)\)
\(U(4,6)\)

\section*{Analysis Rules}

\section*{1. 입력부러 시작}
```

\mp@subsup{\mathbf{r}}{1}{\prime}: P(\mp@subsup{p}{1}{},\mp@subsup{p}{3}{}):- P(\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}),N(\mp@subsup{p}{2}{},\mp@subsup{p}{3}{}),\textrm{U}(\mp@subsup{p}{1}{},\mp@subsup{p}{3}{}).
\mp@subsup{r}{2}{}
r3: R(p1, p2):- P(p, p},\mp@subsup{p}{2}{}),\textrm{A}(\mp@subsup{p}{1}{},\mp@subsup{p}{2}{})

```

\section*{정적 분석}

\section*{Program}
```

controlSocket.close(); //L4
controlSocket = null; //L5
request.clear(); //L6
request = null;
//L7

```

Derivation Graph


\section*{Analysis Rules}
```

\mp@subsup{r}{1}{}: P(\mp@subsup{p}{1}{},\mp@subsup{p}{3}{}):- P(\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}),N(\mp@subsup{p}{2}{},\mp@subsup{p}{3}{}),\textrm{U}(\mp@subsup{p}{1}{},\mp@subsup{p}{3}{}).
\mp@subsup{\mathbf{r}}{2}{\prime}: P(p, p, p2):- P(p, p, p1).
\mp@subsup{\mathbf{r}}{3}{}: (

```
2. 입력에 규칙을 적용

\section*{정적 분석}

\section*{Program}
```

controlSocket.close(); //L4
controlSocket = null; //L5
request.clear(); //L6
request = null; //L7

```

\section*{Analysis Rules}
```

\mp@subsup{\mathbf{r}}{1}{\prime}: P(\mp@subsup{p}{1}{},\mp@subsup{p}{3}{}):- P(\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}),N(\mp@subsup{p}{2}{},\mp@subsup{p}{3}{}),\textrm{U}(\mp@subsup{p}{1}{},\mp@subsup{p}{3}{}).
\mp@subsup{r}{2}{}
r3: R(p1, p2):- P(p, p},\mp@subsup{p}{2}{}),\textrm{A}(\mp@subsup{p}{1}{},\mp@subsup{p}{2}{})

```

Derivation Graph

3. 모든 중간결과에 다시

규칙을 적용

\section*{정적 분석}

\section*{Program}
```

controlSocket.close(); //L4
controlSocket = null; //L5
request.clear(); //L6
request = null; //L7

```

\section*{Analysis Rules}
```

\mp@subsup{\mathbf{r}}{1}{\prime}: P(\mp@subsup{p}{1}{},\mp@subsup{p}{3}{}):- P(\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}),N(\mp@subsup{p}{2}{},\mp@subsup{p}{3}{}),\textrm{U}(\mp@subsup{p}{1}{},\mp@subsup{p}{3}{}).
\mp@subsup{r}{2}{\prime}: P(\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}):- P(\mp@subsup{p}{2}{},\mp@subsup{p}{1}{}).
r3: R(p1, p2):- P(p

```

Derivation Graph


\section*{정적 분석}


\section*{베이지안 네트워크}


\section*{Marginal Inference}


\section*{Marginal Inference}


\section*{Marginal Inference}


\section*{Marginal Inference}

\[
\begin{aligned}
\operatorname{Pr}(\mathrm{R}(4,5)) & =\operatorname{Pr}(\mathrm{R}(4,5) \mid \mathrm{A}(4,5), \mathrm{P}(4,5)) \\
& \times \operatorname{Pr}(\mathrm{A}(4,5)) \\
& \times \operatorname{Pr}(\mathrm{P}(4,5) \mid \ldots)
\end{aligned}
\]

\section*{Marginal Inference}


\section*{순위 기반 오류 보고서}
```

public class RequestHandler {
private FtpRequest request;
public FtpRequest getRequest() {
return request; //L0
}
public void close() {
synchronized (this) { //L1
if (isClosed) return; //L2
isClosed = true; //L3
}
controlSocket.close(); //L4
controlSocket = null; //L5
request.clear(); //L6
request = null; //L7
}
}

```
\begin{tabular}{ccc|}
\hline Ranking & Alarm & Confidence \\
\hline 1 & \(\mathrm{R}(4,5)\) & 0.398 \\
2 & \(\mathrm{R}(5,5)\) & 0.378 \\
\hline 3 & \(\mathrm{R}(6,7)\) & 0.324 \\
4 & \(\mathrm{R}(7,7)\) & 0.308 \\
\hline 5 & \(\mathrm{R}(0,7)\) & 0.279 \\
\hline
\end{tabular}

Q: What are the probabilities of the other alarms when \(R(4,5)\) is false?

\section*{경보의 확률}


\section*{경보의 확률}


\section*{경보의 확률}

\[
\begin{aligned}
& \operatorname{Pr}(P(4,5) \mid \neg R(4,5)) \\
& =\operatorname{Pr}\left(\neg R(4,5) \mid \operatorname{P(4,5))}{ }^{*}\right. \\
& \quad \operatorname{Pr}(\mathrm{P}(4,5)) / \operatorname{Pr}(\neg \mathrm{R}(4,5)) \\
& =0.03
\end{aligned}
\]

\section*{경보의 확률}

\[
\begin{aligned}
& \operatorname{Pr}(P(4,5) \mid \neg R(4,5)) \\
& =\operatorname{Pr}\left(\neg R(4,5) \mid \operatorname{P(4,5))}{ }^{*}\right. \\
& \quad \operatorname{Pr}(\mathrm{P}(4,5)) / \operatorname{Pr}(\neg \mathrm{R}(4,5)) \\
& =0.03
\end{aligned}
\]

By Bayes's Rule:
```

Pr}(\textrm{A}|\textrm{B})=\operatorname{Pr}(\textrm{B}|\textrm{A})* Pr(A)/ Pr(B

```

\section*{경보의 확률}

\[
\begin{aligned}
& \operatorname{Pr}(P(4,5) \mid \neg R(4,5)) \\
& =\operatorname{Pr}\left(\neg R(4,5) \mid \operatorname{P(4,5))}{ }^{*}\right. \\
& \quad \operatorname{Pr}(\mathrm{P}(4,5)) / \operatorname{Pr}(\neg \mathrm{R}(4,5)) \\
& =0.03
\end{aligned}
\]
```

By Bayes's Rule:

```
```

Pr(A|B)= Pr(B|A) * Pr(A)/ Pr}(\textrm{B}

```
```

Pr(A|B)= Pr(B|A) * Pr(A)/ Pr}(\textrm{B}

```
\[
\begin{aligned}
& \operatorname{Pr}(\mathrm{R}(6,7) \mid \neg \mathrm{R}(4,5)) \\
& =\operatorname{Pr}(\mathrm{R}(6,7) \mid \mathrm{P}(4,5))^{*} \\
& \operatorname{Pr}(\mathrm{P}(4,5)) \mid \neg \mathrm{R}(4,5)) \\
& =0.03
\end{aligned}
\]

\section*{개선된 순위}
\begin{tabular}{|ccc|}
\hline Ranking & Alarm & Confidence \\
\hline 1 & \(R(4,5)\) & 0.398 \\
2 & \(R(5,5)\) & 0.378 \\
3 & \(R(6,7)\) & 0.324 \\
4 & \(R(7,7)\) & 0.308 \\
\hline 5 & \(R(0,7)\) & 0.279 \\
\hline
\end{tabular}

\section*{개선된 순위}
\begin{tabular}{|ccc|}
\hline Ranking & Alarm & Confidence \\
\hline 1 & \(R(0,7)\) & 0.279 \\
\hline 2 & \(R(5,5)\) & 0.035 \\
\hline 3 & \(R(6,7)\) & 0.030 \\
\hline 4 & \(R(7,7)\) & 0.028 \\
\hline 5 & \(R(4,5)\) & 0 \\
\hline
\end{tabular}

\section*{효과}

\section*{40-616KLOC JAVA Programs \\ Datarace and Privacy leak analyses}


\section*{효과}


\section*{효과}
```

Only a few of them are real bugs (12\%)
Bug Bingo-90\% $\quad$ Bingo-100\%
$\begin{array}{lllllllllllllllllllllll}100 & 152 & 522 & 30 & 257 & 978 & 940 & 958 & 1870 & 110 & 212 & 393 & 817 & 352 & 156 & 437 & 420\end{array}$

```


\section*{효과}


\section*{효과}


\section*{Outline}


Adaptive Program Analysis


Interactive Program Analysis


\title{
Drake: Continuous Alarm Masking System [PLDI'19]
}


\section*{일괄형 (batch-mode) 분석}


\section*{연속적 (continuous) 분석}
"We only display results for most analyses on changed lines by default;
this keeps analysis results
relevant to the code review at hand", - Google, 2015
"The vast majority of Infer's impact to this point is attributable to continuous reasoning at diff time", - Facebook, 2016

"... is the ability to analyze a changelist (a.k.a. a commit) rather than the entire codebase. the quality and impality can help developers assess
\[
\text { "Ire quality and impact of a change ...", - Microsoft, } 2016
\]
"In order to realize the goal, verification must continue to work with low effort as developers change the code.
.. Neither of these approaches would work for Amazon as \(s 2 n\) is under continuous development.", - Amazon, 2018

\section*{목표}
- 코드 변화와 관련이 있는 순으로 정렬해주는 오류 보고 시스템


Drake


\section*{예제}

Old Version
\begin{tabular}{|c|c|}
\hline 1: \(\mathrm{x}=\) input(); & \multirow[t]{2}{*}{\(x\) and \(y\) can be any integers} \\
\hline 2: y = input(); & \\
\hline 3: \(x=\) opaque_dec \((x)\) & \multirow[t]{2}{*}{Opaque, but "--" actually} \\
\hline 4: y = opaque_dec(y) & \\
\hline 5: x++; // Alarm 0 & \\
\hline 6: y++; // Alarm 0 & teger overflow alarms at 5 \& 6 \\
\hline
\end{tabular}

\section*{예제}

\section*{Old Version}


New Version
```

1: x = input();
2: y = input();
3: x = opaque_dec(x);
+4: y = identity(y);
5: x++; // Alarm
6: y++; // Alarm 涭

```

\section*{예제}

\section*{Old Version}


\section*{New Version}
```

1: x = input();
2: y = input();
3: x = opaque_dec(x);
+4: y = identity(y)
5: x++;
6: y++; // Ala

```

Q: How to emphasize the alarm at 6 that is relevant to this change?

\section*{핵심 기술}

\section*{변화 감지 분석 결과 + 베이지안 추론 (Bayesian inference)}


\section*{변화를 감지하는 분석 결과}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{1: \(\mathrm{x}=\) input();} \\
\hline 2: \(\mathrm{y}=\) & input(); \\
\hline \multicolumn{2}{|l|}{3: \(\mathrm{x}=\) opaque_dec \((\mathrm{x})\);} \\
\hline +4: \(\mathrm{y}=\) & identity(y) ; \\
\hline 5: x++; & // Alarm O \\
\hline 6: y++; & // Alarm \\
\hline
\end{tabular}


Overflow(5)


\section*{변화를 감지하는 분석 결과}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{1: \(\mathrm{x}=\) input();} \\
\hline 2: y = & input(); \\
\hline \multicolumn{2}{|l|}{3: \(\mathrm{x}=\) opaque_dec \((\mathrm{x})\);} \\
\hline +4: \(\mathrm{y}=\) & identity(y) ; \\
\hline 5: x++; & // Alarm 0 \\
\hline 6: y++; & // Alarm 激 \\
\hline
\end{tabular}


Overflow(5)


\section*{관련 점수}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{1: \(\mathrm{x}=\) input();} \\
\hline \multicolumn{3}{|l|}{2: y = input();} \\
\hline \multicolumn{3}{|l|}{3: x = opaque_dec (x)} \\
\hline +4: \(\mathrm{y}=\) & dentity(y) & \\
\hline 5: x++; & // Alarm & \\
\hline 6: y++; & // Alarm & \\
\hline
\end{tabular}


\section*{관련 점수}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{1: \(\mathrm{x}=\) input();} \\
\hline 2: y = & input(); \\
\hline \multicolumn{2}{|l|}{3: \(x=\) opaque_dec ( x\()\);} \\
\hline +4: \(\mathrm{y}=\) & identity(y) ; \\
\hline 5: x++; & // Alarm 0 \\
\hline 6: y++; & // Alarm 淳 \\
\hline
\end{tabular}


13-112KLOC C Programs (old and new) 3 bugs on average
Buffer overrun and Integer overflow analyses

\section*{효과}

\section*{평균 3 개 버그를 찾기 위한 드는 노력의 평균을 측정}



관련성 기반 순위
최대 순위 94 위 이내에 모든 버그 위치

+ 상호 작용 기반 순위
상호 작용 30 회 이내에 모든 버그 검출

\section*{여러 응용}

\section*{\(\operatorname{Pr}(\mathbf{a} \mid e)\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 문제 & 상호작용 대상 & \[
\begin{aligned}
& \text { 오류 검출에 } \\
& \text { 드는 노력 }
\end{aligned}
\] & & & \[
\begin{aligned}
& \text { 오류 검출에 } \\
& \text { 드는 노력 }
\end{aligned}
\] \\
\hline 분석 결과 진위 여부 & 개발자 & \(44 \%\) 감소 & [PLDI' 18 ] & \multirow[t]{4}{*}{\begin{tabular}{l}
확률 모델 학습 \\
[ICSE'22]
\end{tabular}} & 22-33\% 추가 감소 \\
\hline 분석 결과 진위 여부 & 이전 버전 & 65\% 감소 & [PLDI' 19\(]\) & & \(54 \%\) 추가 감소 \\
\hline 분석 결과 진위 여부 & 동적 분석 & \(35 \%\) 감소 & [FSE'21] & & 20\% 추가 감소 \\
\hline \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & & \(\ldots\) \\
\hline
\end{tabular}

\section*{확률 모델 학습}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ranking & Alarm & Confidence & Ranking & Alarm & Confidence \\
\hline 1 & LIne 6 & 0.93 & ..' & & \\
\hline 2 & Line 7 & 0.92 & 132 & Line 7 & 0.41 \\
\hline 3 & Line 8 & 0.91 & 133 & Line 8 & 0.40 \\
\hline ... & & & ** & & \\
\hline
\end{tabular}

\section*{잘못된 일반화 문제}



\section*{핵심 기술}
- 프로그램 합성 + 베이지안 추론


\section*{확률 모델 학습}
- 잘못된 일반화가 일어나는 지점을 찾아 그 지점의 구문적 특징을 포착
```

Cmd ::= Lv := e | Assume(e) | Call(e, e) | Loop(e)
Lv ::=x|*E
E ::=n|Lv|E+E|...

```
\(\operatorname{Pr}(\operatorname{Path}(\mathrm{x}, \mathrm{y}) \mid \operatorname{Edge}(\mathrm{x}, \mathrm{y}))=0.99\)
\(\operatorname{Pr}(\operatorname{Path}(x, y) \mid \operatorname{Path}(x, z), \operatorname{Edge}(x, y), \operatorname{Loop}(y))=0.99 \times p\)
\(\operatorname{Pr}(\operatorname{Path}(x, y) \mid \operatorname{Path}(x, z)\), Edge( \(x, y),!\operatorname{Loop}(y))=0.99\)
\(\operatorname{Pr}(\operatorname{Alarm}(\mathrm{y}) \mid \operatorname{Path}(\mathrm{x}, \mathrm{y})\), Overflow(y)) \(=0.99\)


\section*{정리}
- PL 와 ML 의 결합 사례 \(1: \mathrm{ML}\) 을 이용한 정적 분석
- 흥미로운 요소: 논리만으로 해결이 어려운 문제를 확률로 해결
- 예: 요약 해석 (abstract interpretation) 이 다루지 않는 안전성 조절, 자원량 조절, 상호작용
"프로그램 분석 개론 수업을 들었을 때, 프로그램 분석을 ML, Al로 확장시키는 아이디어가 재미있다고 느꼈습니다. 더 일반적으로는 논리를 확률과 학습으로 확장시키는 과정이 흥미롭다고 생각합니다. \(\{0,1\}\) 의 세계에서 \([0,1]\) 의 세계로 나아간다면 무언가 멋진 결과가 나오지 않을까 생각해서요. 또, 프로그램 분석을 AI로 확장시킬 때 베이지안 추론을 사용한다는 점이 재밌었습니다. 블랙박스인 딥러닝 보단 더 매력적으로 느껴지기 때문입니다.'
- 한 수강생으로부터```

