
기계학습을�이용하여�
선별적으로�안전하게�정적�분석�하기

허기홍�
서울대학교�

(공동�연구:�오학주,�이광근)�
2017.6.26�@�NAVER

1

꿈

• 스스로�진화하는�정적�분석기�

• 여러�경험을�통해�점점�더�똑똑해지는�분석�

• 경험�:�비슷한�프로그램,�사용자�피드백,�과거�버전,�버그,�테스트�등�

• 다른�분야는�이미�:���…

2

정적�분석

•자동으로�SW�의�동작을�미리�어림잡는�일반적인�방법�

• 목적에�따라�다양하게�요약

3

program states

error states

program states

error states

sound analysis program states

error states

sound & precise analysis

program states

error states

unsound analysis

도전�과제

• 성능의�세가지�축:�모두�달성하는�것은�이론적으로�불가능
soundness

scalability precision

4

soundness

scalability precision

soundness

scalability precision

• 전통적인�분류,

무결성�검증용 오류�검출용

soundness

scalability precision

코드�최적화용

긴�여정

• 안전하고,�정확하고,�빠른�정적�분석기

5

soundness

scalability precision

긴�여정

• 안전하고,�정확하고,�빠른�정적�분석기

6

soundness

scalability precision

(2007)�
powered by Abstract Interpretation

긴�여정

• 안전하고,�정확하고,�빠른�정적�분석기

7

soundness

scalability precision

(2014)�

General�Sparse�Analysis�
Framework��

[PLDI’12,TOPLAS’14]
powered by pre-analysis

긴�여정

• 안전하고,�정확하고,�빠른�정적�분석기

8

(2016)�

soundness

scalability precision

powered by pre-analysis 
& machine learning

Selective�X-sensitive�Analysis��
- by�Impact�Pre-analysis�
[PLDI’14,TOPLAS’16,SPE’17]�

- by�Machine�Learning�  
[SAS’16]

긴�여정

• 안전하고,�정확하고,�빠른�정적�분석기

9

soundness

scalability precision

(2017)�

Selectively�Unsound�Analysis�
[ICSE’17]

powered by machine learning

오늘
�발표

목표

10

False Positive

False Negative

Uniformly
Unsound

Uniformly
Sound

목표

11

Selectively
Unsound

False Positive

False Negative

Uniformly
Unsound

Uniformly
Sound

선별적으로�안전한�분석

• 불안전한�기법을�선별적으로�적용�

• 예)�순환문�해체,�라이브러리�호출�무시

12

Uniformly Sound Uniformly UnsoundSelectively Unsound

while(e){ C } if(e){ C } A;lib();B; A;B;

program states

error states

program states

error states

program states

error states

false positive false negative

예제

13

•안전한�버퍼오버런�분석기�(숫자는�범위로�요약)�

• 모든�순환문을�안전하게

str = "hello world";
for(i=0; !str[i]; i++)// buffer access 1
skip;

size = positive_input();
for(i=0; i<size; i++)
skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:
• We present a new approach of selectively employing

unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";
i = 0;
if (!str[i]) // buffer access 1

skip;

size = positive_input();
i = 0;
if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis
On the other hand, a sound interval analysis can detect the

bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+1], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+1] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis
Our selectively unsound analyzer applies unsoundness only

to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";
i = 0;
if(!str[i]) // buffer access 1

skip;

size = positive_input();
for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.

14

str = "hello world";
for(i=0; !str[i]; i++)// buffer access 1
skip;

size = positive_input();
for(i=0; i<size; i++)
skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:
• We present a new approach of selectively employing

unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";
i = 0;
if (!str[i]) // buffer access 1

skip;

size = positive_input();
i = 0;
if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis
On the other hand, a sound interval analysis can detect the

bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+1], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+1] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis
Our selectively unsound analyzer applies unsoundness only

to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";
i = 0;
if(!str[i]) // buffer access 1

skip;

size = positive_input();
for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.

str.size: [12, 12]

i: [0, +oo]

size: [0, +oo]

i: [0, +oo]

예제

•안전한�버퍼오버런�분석기�(숫자는�범위로�요약)�

• 모든�순환문을�안전하게

예제

•획일적으로�불안전한�버퍼오버런�분석기�

• 모든�순환문을�해체

15

str = "hello world";
for(i=0; !str[i]; i++)// buffer access 1
skip;

size = positive_input();
for(i=0; i<size; i++)
skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:
• We present a new approach of selectively employing

unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";
i = 0;
if (!str[i]) // buffer access 1

skip;

size = positive_input();
i = 0;
if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis
On the other hand, a sound interval analysis can detect the

bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+1], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+1] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis
Our selectively unsound analyzer applies unsoundness only

to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";
i = 0;
if(!str[i]) // buffer access 1

skip;

size = positive_input();
for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.

16

i: [0, 0]

str = "hello world";
for(i=0; !str[i]; i++)// buffer access 1
skip;

size = positive_input();
for(i=0; i<size; i++)
skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:
• We present a new approach of selectively employing

unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";
i = 0;
if (!str[i]) // buffer access 1

skip;

size = positive_input();
i = 0;
if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis
On the other hand, a sound interval analysis can detect the

bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+1], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+1] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis
Our selectively unsound analyzer applies unsoundness only

to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";
i = 0;
if(!str[i]) // buffer access 1

skip;

size = positive_input();
for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.

i: [0, 0]

예제

•획일적으로�불안전한�버퍼오버런�분석기�

• 모든�순환문을�해체

예제

17

str = "hello world";
for(i=0; !str[i]; i++)// buffer access 1
skip;

size = positive_input();
for(i=0; i<size; i++)
skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:
• We present a new approach of selectively employing

unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";
i = 0;
if (!str[i]) // buffer access 1

skip;

size = positive_input();
i = 0;
if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis
On the other hand, a sound interval analysis can detect the

bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+1], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+1] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis
Our selectively unsound analyzer applies unsoundness only

to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";
i = 0;
if(!str[i]) // buffer access 1

skip;

size = positive_input();
for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.

•선별적으로�안전한�버퍼오버런�분석기�

• "무해한"�순환문만�선별적으로�해체

18

str = "hello world";
for(i=0; !str[i]; i++)// buffer access 1
skip;

size = positive_input();
for(i=0; i<size; i++)
skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:
• We present a new approach of selectively employing

unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";
i = 0;
if (!str[i]) // buffer access 1

skip;

size = positive_input();
i = 0;
if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis
On the other hand, a sound interval analysis can detect the

bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+1], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+1] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis
Our selectively unsound analyzer applies unsoundness only

to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";
i = 0;
if(!str[i]) // buffer access 1

skip;

size = positive_input();
for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.

i: [0, 0]

i: [0, +oo]

예제

•선별적으로�안전한�버퍼오버런�분석기�

• "무해한"�순환문만�선별적으로�해체

성능
• 실험:�두�가지�정적분석기�+�오픈소스�SW�

• 오염�(taint)�분석:�106�포맷�스트링�오류�/�13�programs�

• 구간�(interval)�분석:�138�버퍼�오버런�오류�/�23�programs

FPR

0

25

50

75

100

Ba
se
lin
e

Se
lec
tiv
e

Un
ifo
rm

FNR

0

20

40

60

80

Ba
se
lin
e

Se
lec
tiv
e

Un
ifo
rm

Interval Analysis

FPR

0

25

50

75

100

Ba
se
lin
e

Se
lec
tiv
e

Un
ifo
rm

FNR

0

25

50

75

100

Ba
se
lin
e

Se
lec
tiv
e

Un
ifo
rm

Taint Analysis

19

• 안전성을�포기할�대상�������������찾기�

• 불안전하게�분석할�순환문�(������������������)�

• 불안전하게�분석할�라이브러리�호출�(���������������)

• �만�불안전하게�분석

문제�정의

20

F 2 Pgm ⇥⇧ ! A

⇧ = 2Loop

⇧ = 2Lib

⇡ 2 ⇧

p 2 ⇡

전체�구조

21

Codebase

Training Data Generation Machine Learning

Training
Data

F

�

Inferring Harmless Unsoundness

Training Harmless Unsoundness

Test
Program

Classifier

Figure 2: The overview of our system. Given static

analyzer F and codebase, our system automatically

generates training data. Using the training data, a

machine learning algorithm trains a classifier that

infers the new harmless unsoundness for the test

program.

in the codebase is collected as training data, and then ef-
fectively learnt by an anomaly detection algorithm. It is be-
cause 1) we can easily observe regular properties about the
harmless unsoundness for a static analysis, but not about the
other side; 2) there is usually much more training data for
harmless unsoundness than harmful one. We use the One-
Class SVM [17] classifier for this purpose.

3. OUR TECHNIQUE
In this section, we explain the details of our technique. Our

method first parameterizes the static analysis by soundness
(Section 3.1). Next, we describe our overall approach (Sec-
tion 3.2) and machine learning-based parameter inference
algorithm (Section 3.3).

3.1 Static Analysis Parameterized by Sound-
ness

We use a variant of the well-known setting for the param-
eterized static analysis [8], where the parameter dictates the
analysis’s soundness, not the analysis’s precision as typical
in the literature [8, 12, 26, 16]. Let P 2 Pgm be a program,
CP the set of program points of P , and JP a set of pro-
gram components for which we control the soundness. For
instance, JP denotes the set of loops, the set of library calls,
or the set of complex operations such as bitwise operations
made in the program. A soundness parameter ⇡ ✓ ⇧P of
program P is a set of program components

⇡ ✓ ⇧P = }(JP)

that specifies which program components to soundly ana-
lyze. For instance, when JP = {j1, · · · , jn} is the set of loops,
ji 2 ⇡ means that the ith loop in the program is selected
to be analyzed soundly, otherwise (ji 62 ⇡) the analysis be-
comes unsound for the loop: we unroll the loop only once
and ignore all the subsequent loop iterations. Let 1 be the
parameter where every component is selected and 0 the pa-
rameter where no component is selected. Thus, 1 (resp., 0)
represents the full soundness (resp., full unsoundness) with
respect to the soundness parameter space ⇧P . In the rest of

this paper, we omit subscript P (e.g., from CP , JP , and ⇧P)
when there is no confusion.
We model a static analyzer as a function

F : Pgm ⇥⇧ ! }(C)

which, given a program P and its soundness parameter ⇡,
returns alarms, a set of program points that the analyzer
concludes as dangerous.
Our goal is to find a sweet spot in the parameter space.

For instance, F (P,1) denotes the analysis that is fully sound
with respect to the parameter space ⇧, which can detect all
bugs typically at the cost of a large number of false alarms.
F (P,0) means the fully unsound analysis, which typically
reports the smallest number of false alarms (with respect
to the parameter space ⇧) but is at risk of missing a large
amount of real bugs as well. We aim to find a parameter
between them, where the analysis reports the fewest possible
false alarms yet still detects most of the real bugs.
Note that the existing parameter search algorithms for

static analyzers [8, 12, 26, 16] cannot be used for our pur-
pose. For a given program to analyze, the existing search
algorithms infer a precision setting by analyzing the pro-
gram a priori (either by iterative refinements [12, 26] or a
quick pre-analysis [16]). This approach, however, is feasible
only when the evaluation criterion (i.e., precision) can be de-
termined automatically. In our case, the evaluation involves
judging truth and falsehood of alarms from static analyzers,
which is undecidable in general. This explains why we take
a machine learning approach to infer soundness parameters.

3.2 Big Picture
As typical in other machine learning techniques, our method

consists of learning and testing phases.

Learning.
We first learn from an existing codebase a statistical model

M : Pgm ! ⇧ (1)

that predicts a soundness parameter for a given program.
Ideally, the output soundness parameter M(P) describes
precision-e↵ective yet harmless unsoundness for program P ,
that is, the unsound treatment of program components in
M(P) has no e↵ect on the capability to detect real bugs.
The codebase is a set of annotated programs

P = {(P1, B1), . . . , (Pn, Bn)}

where each program Pi 2 Pgm is associated with a set of
buggy program points Bi ✓ CPi .

Testing.
Using the model learnt from the codebase, we run the

static analysis for a new, unseen program P as follows:

F (P,M(P)).

That is, we first determine the soundness parameter (M(P))
for the program P , and instantiate the static analysis with
the parameter.

3.3 Learning Harmless Unsoundness
Now, we explain the learning phase. We use a supervised

learning, where a classifier is learnt from a set of training
examples. Since we use the One-Class SVM, the training

loop 1

loop 2

loop 3

...

if n

학습�데이터�생성

22

loop 1

loop 2

loop 3

...

loop n

if 1

loop 2

loop 3

...

loop n

loop 1

if 2

loop 3

...

loop n

loop 1

loop 2

if 3

...

loop n

training pgm

true alarms

false alarms

5

10

5

8

4

10

5

5

• 준비물:�버그가�알려져�있는�프로그램�뭉치�+�정적�분석기�

• 학습�데이터:�분석의�정확도를�떨어뜨리지만�무해한�부품�

• 예)�"어떤�순환문�해체했더니�FP�감소,�TP�유지"

…

3

3

특질�&�학습

• 각�프로그램�부품을�특질�벡터�(feature�vector)�형태로�인코딩

23

f(x) = <f1(x), f2(x), …, fn(x)>

f(loop1) = <1, 0, …, 1>

f(loop2) = <0, 1, …, 1>
f(lib1) = <0, 1, …, 0>

f(lib2) = <1, 1, …, 1>

• 기존�ML�알고리즘으로�분류기�(classifier)�학습�

• e.g.)�OC-SVM

24

Target Feature Property Type Description

Loop

Null Syntactic Binary Whether the loop condition contains nulls or not
Const Syntactic Binary Whether the loop condition contains constants or not
Array Syntactic Binary Whether the loop condition contains array accesses or not

Conjunction Syntactic Binary Whether the loop condition contains && or not
IdxSingle Syntactic Binary Whether the loop condition contains an index for a single array in the loop

IdxMulti Syntactic Binary Whether the loop condition contains an index for multiple arrays in the loop
IdxOutside Syntactic Binary Whether the loop condition contains an index for an array outside of the loop

InitIdx Syntactic Binary Whether an index is initialized before the loop
Exit Syntactic Numeric The (normalized) number of exits in the loop
Size Syntactic Numeric The (normalized) size of the loop

ArrayAccess Syntactic Numeric The (normalized) number of array accesses in the loop
ArithInc Syntactic Numeric The (normalized) number of arithmetic increments in the loop

PointerInc Syntactic Numeric The (normalized) number of pointer increments in the loop
Prune Semantic Binary Whether the loop condition prunes the abstract state or not
Input Semantic Binary Whether the loop condition is determined by external inputs
GVar Semantic Binary Whether global variables are accessed in the loop condition

FinInterval Semantic Binary Whether a variable has a finite interval value in the loop condition
FinArray Semantic Binary Whether a variable has a finite size of array in the loop condition
FinString Semantic Binary Whether a variable has a finite string in the loop condition

LCSize Semantic Binary Whether a variable has an array of which the size is a left-closed interval
LCOffset Semantic Binary Whether a variable has an array of which the offset is a left-closed interval
#AbsLoc Semantic Numeric The (normalized) number of abstract locations accessed in the loop

Library

Const Syntactic Binary Whether the parameters contain constants or not
Void Syntactic Binary Whether the return type is void or not

Int Syntactic Binary Whether the return type is int or not
CString Syntactic Binary Whether the function is declared in string.h or not

InsideLoop Syntactic Binary Whether the function is called in a loop or not
#Args Syntactic Numeric The (normalized) number of arguments

DefParam Semantic Binary Whether a parameter are defined in a loop or not
UseRet Semantic Binary Whether the return value is used in a loop or not

UptParam Semantic Binary Whether a parameter is update via the library call
Escape Semantic Binary Whether the return value escapes the caller

GVar Semantic Binary Whether a parameters points to a global variable
Input Semantic Binary Whether a parameters are determined by external inputs

FinInterval Semantic Binary Whether a parameter have a finite interval value
#AbsLoc Semantic Numeric The (normalized) number of abstract locations accessed in the arguments

#ArgString Semantic Numeric The (normalized) number of string arguments

Fig. 5. Features for typical loops and library calls in C programs

B. Effectiveness of Our Approach

We evaluate the effectiveness of our approach by compar-
ing precision of SELECTIVE to that of the other analyzers,
BASELINE and UNIFORM. We use cross-validation, a model
validation technique for assessing how the results of a statis-
tical analysis will generalize to new data. We show the results
from three types of cross-validation: leave-one-out, 2-fold, and
3-fold cross-validation.

1) Leave-one-out Cross-validation: This is one of the most
common types of cross-validation, which uses one observation
as the validation set and the remaining observations as the
training set. In case of the interval analysis, for example,
among the 23 benchmark programs, one program is used
for validating and measuring the effectiveness of the learned
model, and the other remaining 22 programs are used for
training.

Table I shows the results of the leave-one-out cross-
validation for the interval analysis. We measured the number of
true (T) and false (F) alarms from BASELINE, UNIFORM, and
SELECTIVE. In terms of true alarms, BASELINE detects 118
real bugs (FNR: 14.5%) in the programs. While UNIFORM de-
tects only 33 bugs (FNR: 76.1%), SELECTIVE effectively de-

BASELINE SELECTIVE UNIFORM
Program LOC Bug T F T F T F
SM-1 0.5K 28 28 18 28 15 13 5
SM-2 0.8K 2 2 16 1 4 0 0
SM-3 0.7K 3 3 3 3 3 0 0
SM-4 0.7K 10 10 6 10 6 6 0
SM-5 1.7K 3 3 6 3 6 0 0
SM-6 0.4K 1 0 0 0 0 0 0
SM-7 1.1K 2 2 32 0 2 0 0
BIND-1 1.2K 1 1 35 1 33 0 0
BIND-2 1.7K 1 1 45 0 41 0 0
BIND-3 0.5K 1 1 4 0 1 0 0
BIND-4 1.1K 2 2 0 0 0 0 0
FTP-1 0.8K 4 4 13 4 3 0 0
FTP-2 1.5K 1 1 7 1 6 0 3
FTP-3 1.5K 24 24 25 23 17 7 12
polymorph-0.4.0 0.7K 10 10 6 3 6 0 6
ncompress-4.2.4 1.9K 12 0 10 4 0 0 0
129.compress 2.0K 7 7 34 7 14 4 7
spell-1.0 2.2K 1 0 0 0 0 0 0
man-1.5h1 4.7K 6 5 60 1 28 0 13
256.bzip2 4.7K 3 3 149 3 21 3 21
gzip-1.2.4a 8.2K 13 11 87 8 34 0 24
bc-1.06 17.0K 2 0 57 0 10 0 9
sed-4.0.8 25.9K 1 0 64 0 14 0 4
Total 138 118 677 100 264 33 104

TABLE I
THE NUMBER OF ALARMS IN INTERVAL ANALYSIS

• 22�가지�순환문�관련�특질

특질�(feature)

25

Target Feature Property Type Description

Loop

Null Syntactic Binary Whether the loop condition contains nulls or not
Const Syntactic Binary Whether the loop condition contains constants or not
Array Syntactic Binary Whether the loop condition contains array accesses or not

Conjunction Syntactic Binary Whether the loop condition contains && or not
IdxSingle Syntactic Binary Whether the loop condition contains an index for a single array in the loop

IdxMulti Syntactic Binary Whether the loop condition contains an index for multiple arrays in the loop
IdxOutside Syntactic Binary Whether the loop condition contains an index for an array outside of the loop

InitIdx Syntactic Binary Whether an index is initialized before the loop
Exit Syntactic Numeric The (normalized) number of exits in the loop
Size Syntactic Numeric The (normalized) size of the loop

ArrayAccess Syntactic Numeric The (normalized) number of array accesses in the loop
ArithInc Syntactic Numeric The (normalized) number of arithmetic increments in the loop

PointerInc Syntactic Numeric The (normalized) number of pointer increments in the loop
Prune Semantic Binary Whether the loop condition prunes the abstract state or not
Input Semantic Binary Whether the loop condition is determined by external inputs
GVar Semantic Binary Whether global variables are accessed in the loop condition

FinInterval Semantic Binary Whether a variable has a finite interval value in the loop condition
FinArray Semantic Binary Whether a variable has a finite size of array in the loop condition
FinString Semantic Binary Whether a variable has a finite string in the loop condition

LCSize Semantic Binary Whether a variable has an array of which the size is a left-closed interval
LCOffset Semantic Binary Whether a variable has an array of which the offset is a left-closed interval
#AbsLoc Semantic Numeric The (normalized) number of abstract locations accessed in the loop

Library

Const Syntactic Binary Whether the parameters contain constants or not
Void Syntactic Binary Whether the return type is void or not

Int Syntactic Binary Whether the return type is int or not
CString Syntactic Binary Whether the function is declared in string.h or not

InsideLoop Syntactic Binary Whether the function is called in a loop or not
#Args Syntactic Numeric The (normalized) number of arguments

DefParam Semantic Binary Whether a parameter are defined in a loop or not
UseRet Semantic Binary Whether the return value is used in a loop or not

UptParam Semantic Binary Whether a parameter is update via the library call
Escape Semantic Binary Whether the return value escapes the caller

GVar Semantic Binary Whether a parameters points to a global variable
Input Semantic Binary Whether a parameters are determined by external inputs

FinInterval Semantic Binary Whether a parameter have a finite interval value
#AbsLoc Semantic Numeric The (normalized) number of abstract locations accessed in the arguments

#ArgString Semantic Numeric The (normalized) number of string arguments

Fig. 5. Features for typical loops and library calls in C programs

B. Effectiveness of Our Approach

We evaluate the effectiveness of our approach by compar-
ing precision of SELECTIVE to that of the other analyzers,
BASELINE and UNIFORM. We use cross-validation, a model
validation technique for assessing how the results of a statis-
tical analysis will generalize to new data. We show the results
from three types of cross-validation: leave-one-out, 2-fold, and
3-fold cross-validation.

1) Leave-one-out Cross-validation: This is one of the most
common types of cross-validation, which uses one observation
as the validation set and the remaining observations as the
training set. In case of the interval analysis, for example,
among the 23 benchmark programs, one program is used
for validating and measuring the effectiveness of the learned
model, and the other remaining 22 programs are used for
training.

Table I shows the results of the leave-one-out cross-
validation for the interval analysis. We measured the number of
true (T) and false (F) alarms from BASELINE, UNIFORM, and
SELECTIVE. In terms of true alarms, BASELINE detects 118
real bugs (FNR: 14.5%) in the programs. While UNIFORM de-
tects only 33 bugs (FNR: 76.1%), SELECTIVE effectively de-

BASELINE SELECTIVE UNIFORM
Program LOC Bug T F T F T F
SM-1 0.5K 28 28 18 28 15 13 5
SM-2 0.8K 2 2 16 1 4 0 0
SM-3 0.7K 3 3 3 3 3 0 0
SM-4 0.7K 10 10 6 10 6 6 0
SM-5 1.7K 3 3 6 3 6 0 0
SM-6 0.4K 1 0 0 0 0 0 0
SM-7 1.1K 2 2 32 0 2 0 0
BIND-1 1.2K 1 1 35 1 33 0 0
BIND-2 1.7K 1 1 45 0 41 0 0
BIND-3 0.5K 1 1 4 0 1 0 0
BIND-4 1.1K 2 2 0 0 0 0 0
FTP-1 0.8K 4 4 13 4 3 0 0
FTP-2 1.5K 1 1 7 1 6 0 3
FTP-3 1.5K 24 24 25 23 17 7 12
polymorph-0.4.0 0.7K 10 10 6 3 6 0 6
ncompress-4.2.4 1.9K 12 0 10 4 0 0 0
129.compress 2.0K 7 7 34 7 14 4 7
spell-1.0 2.2K 1 0 0 0 0 0 0
man-1.5h1 4.7K 6 5 60 1 28 0 13
256.bzip2 4.7K 3 3 149 3 21 3 21
gzip-1.2.4a 8.2K 13 11 87 8 34 0 24
bc-1.06 17.0K 2 0 57 0 10 0 9
sed-4.0.8 25.9K 1 0 64 0 14 0 4
Total 138 118 677 100 264 33 104

TABLE I
THE NUMBER OF ALARMS IN INTERVAL ANALYSIS

Target Feature Property Type Description

Loop

Null Syntactic Binary Whether the loop condition contains nulls or not
Const Syntactic Binary Whether the loop condition contains constants or not
Array Syntactic Binary Whether the loop condition contains array accesses or not

Conjunction Syntactic Binary Whether the loop condition contains && or not
IdxSingle Syntactic Binary Whether the loop condition contains an index for a single array in the loop

IdxMulti Syntactic Binary Whether the loop condition contains an index for multiple arrays in the loop
IdxOutside Syntactic Binary Whether the loop condition contains an index for an array outside of the loop

InitIdx Syntactic Binary Whether an index is initialized before the loop
Exit Syntactic Numeric The (normalized) number of exits in the loop
Size Syntactic Numeric The (normalized) size of the loop

ArrayAccess Syntactic Numeric The (normalized) number of array accesses in the loop
ArithInc Syntactic Numeric The (normalized) number of arithmetic increments in the loop

PointerInc Syntactic Numeric The (normalized) number of pointer increments in the loop
Prune Semantic Binary Whether the loop condition prunes the abstract state or not
Input Semantic Binary Whether the loop condition is determined by external inputs
GVar Semantic Binary Whether global variables are accessed in the loop condition

FinInterval Semantic Binary Whether a variable has a finite interval value in the loop condition
FinArray Semantic Binary Whether a variable has a finite size of array in the loop condition
FinString Semantic Binary Whether a variable has a finite string in the loop condition

LCSize Semantic Binary Whether a variable has an array of which the size is a left-closed interval
LCOffset Semantic Binary Whether a variable has an array of which the offset is a left-closed interval
#AbsLoc Semantic Numeric The (normalized) number of abstract locations accessed in the loop

Library

Const Syntactic Binary Whether the parameters contain constants or not
Void Syntactic Binary Whether the return type is void or not

Int Syntactic Binary Whether the return type is int or not
CString Syntactic Binary Whether the function is declared in string.h or not

InsideLoop Syntactic Binary Whether the function is called in a loop or not
#Args Syntactic Numeric The (normalized) number of arguments

DefParam Semantic Binary Whether a parameter are defined in a loop or not
UseRet Semantic Binary Whether the return value is used in a loop or not

UptParam Semantic Binary Whether a parameter is update via the library call
Escape Semantic Binary Whether the return value escapes the caller

GVar Semantic Binary Whether a parameters points to a global variable
Input Semantic Binary Whether a parameters are determined by external inputs

FinInterval Semantic Binary Whether a parameter have a finite interval value
#AbsLoc Semantic Numeric The (normalized) number of abstract locations accessed in the arguments

#ArgString Semantic Numeric The (normalized) number of string arguments

Fig. 5. Features for typical loops and library calls in C programs

B. Effectiveness of Our Approach

We evaluate the effectiveness of our approach by compar-
ing precision of SELECTIVE to that of the other analyzers,
BASELINE and UNIFORM. We use cross-validation, a model
validation technique for assessing how the results of a statis-
tical analysis will generalize to new data. We show the results
from three types of cross-validation: leave-one-out, 2-fold, and
3-fold cross-validation.

1) Leave-one-out Cross-validation: This is one of the most
common types of cross-validation, which uses one observation
as the validation set and the remaining observations as the
training set. In case of the interval analysis, for example,
among the 23 benchmark programs, one program is used
for validating and measuring the effectiveness of the learned
model, and the other remaining 22 programs are used for
training.

Table I shows the results of the leave-one-out cross-
validation for the interval analysis. We measured the number of
true (T) and false (F) alarms from BASELINE, UNIFORM, and
SELECTIVE. In terms of true alarms, BASELINE detects 118
real bugs (FNR: 14.5%) in the programs. While UNIFORM de-
tects only 33 bugs (FNR: 76.1%), SELECTIVE effectively de-

BASELINE SELECTIVE UNIFORM
Program LOC Bug T F T F T F
SM-1 0.5K 28 28 18 28 15 13 5
SM-2 0.8K 2 2 16 1 4 0 0
SM-3 0.7K 3 3 3 3 3 0 0
SM-4 0.7K 10 10 6 10 6 6 0
SM-5 1.7K 3 3 6 3 6 0 0
SM-6 0.4K 1 0 0 0 0 0 0
SM-7 1.1K 2 2 32 0 2 0 0
BIND-1 1.2K 1 1 35 1 33 0 0
BIND-2 1.7K 1 1 45 0 41 0 0
BIND-3 0.5K 1 1 4 0 1 0 0
BIND-4 1.1K 2 2 0 0 0 0 0
FTP-1 0.8K 4 4 13 4 3 0 0
FTP-2 1.5K 1 1 7 1 6 0 3
FTP-3 1.5K 24 24 25 23 17 7 12
polymorph-0.4.0 0.7K 10 10 6 3 6 0 6
ncompress-4.2.4 1.9K 12 0 10 4 0 0 0
129.compress 2.0K 7 7 34 7 14 4 7
spell-1.0 2.2K 1 0 0 0 0 0 0
man-1.5h1 4.7K 6 5 60 1 28 0 13
256.bzip2 4.7K 3 3 149 3 21 3 21
gzip-1.2.4a 8.2K 13 11 87 8 34 0 24
bc-1.06 17.0K 2 0 57 0 10 0 9
sed-4.0.8 25.9K 1 0 64 0 14 0 4
Total 138 118 677 100 264 33 104

TABLE I
THE NUMBER OF ALARMS IN INTERVAL ANALYSIS

• 15�가지�라이브러리�호출�관련�특질

특질�(feature)

무해한�부품

• 분석�정확도를�떨어트리지만�안전한�코드�

• 전형적:�코딩�스타일,�요약�도메인,�등등�

• 풍부:�거짓�경보�>>�버그,�올바른�코드�>>�틀린�코드�

• 예)

26

str = "hello world";
for(i=0; !str[i]; i++)// buffer access 1
skip;

size = positive_input();
for(i=0; i<size; i++)
skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:
• We present a new approach of selectively employing

unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";
i = 0;
if (!str[i]) // buffer access 1

skip;

size = positive_input();
i = 0;
if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis
On the other hand, a sound interval analysis can detect the

bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+1], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+1] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis
Our selectively unsound analyzer applies unsoundness only

to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";
i = 0;
if(!str[i]) // buffer access 1

skip;

size = positive_input();
for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.

무해한�부품

• 분석�정확도를�떨어트리지만�안전한�코드�

• 전형적:�코딩�스타일,�요약�도메인,�등등�

• 풍부:�거짓�경보�>>�버그,�올바른�코드�>>�틀린�코드�

• 예)

27

str = "hello world";
for(i=0; !str[i]; i++)// buffer access 1
skip;

size = positive_input();
for(i=0; i<size; i++)
skip;

... = str[i]; // buffer access 2

Fig. 1. Example program

276 false alarms (FPR: 72%). Our selectively unsound analysis
maintains the original precision while greatly decreasing the
number of false negatives: it reports 92 bugs with 27 false
alarms (FPR: 23%, FNR: 13%). The second experiment is
done with an interval analysis for buffer-overflow detection,
where we control the soundness for both loops and library
calls. In the benchmarks with 138 bugs, the uniformly unsound
analysis detects 33 bugs with 104 false alarms (FPR: 76%,
FNR: 76%). The uniformly sound analysis detects 118 bugs
with 677 false alarms (FPR: 85%). Our selectively unsound
analysis detects 96 bugs with 266 false alarms (FPR: 73%,
FNR: 30%).

To summarize, our contributions are as follows:
• We present a new approach of selectively employing

unsoundness in static analysis. All of the existing bug-
finding static analyzers are uniformly unsound.

• We present a machine-learning technique that can auto-
matically tune a static analysis to be selectively unsound.
Our technique is based on anomaly detection with auto-
matic generation of labelled data.

• We demonstrate the effectiveness of the technique by
experiments with two bug-finding static analyzers for C.

II. OVERVIEW

We illustrate our approach using a static analysis with the
interval domain. The goal of the analysis is to detect buffer
overflow bugs in a program. For simplicity, we only concern
with loops in this section, which could be a potential cause of
the buffer overflow bugs.

Consider a simple program in Figure 1. In the program,
there are two loops and two buffer-access expressions. The
first loop iterates over a constant string until the null value
in the string is found. In the loop, buffer access 1 is always
safe, since i is guaranteed to be smaller than the length of
str inside the loop. On the other hand, buffer access 2 is not
always safe, because the index i has the value of size after
the second loop, which can be an arbitrary value due to the
external input and may cause a buffer overflow.

A. Uniformly Unsound Analysis

Consider an analysis that is uniformly unsound for every
loop. That is, all the loops in the given program are unrolled
for a fixed number of times, and subsequent loop iterations are
ignored during the analysis. From the perspective of such an
unsound analysis, the example program is treated as follows.

str = "hello world";
i = 0;
if (!str[i]) // buffer access 1

skip;

size = positive_input();
i = 0;
if (i < size)

skip;

... = str[i]; // buffer access 2

Note that each loop is unrolled once and replaced with an if-
statement. The analysis does not report a false alarm for buffer
access 1, since the value of i remains as [0, 0]. However, it
also fails to report a true alarm for buffer access 2; the value
of i is approximated to [0, 0], hence the analysis considers the
buffer access to be safe.

B. Uniformly Sound Analysis
On the other hand, a sound interval analysis can detect the

bug at buffer access 2 with a false alarm at buffer access 1.
Inside the first loop, the analysis conservatively approximates
the value of i to [0,+1], since this value is not refined by
the loop condition !str[i]. It is because the interval domain
cannot capture non-convex properties (e.g. i 6= 11, where 11
is the null index of str). Thus, the analysis reports an alarm
for buffer access 1 as a potential buffer overflow error, which
is a false alarm that we want to avoid. Meanwhile, the variable
i in the second loop is upper bounded by size whose range
is approximated as [0,+1] due to the unknown input value.
Therefore the analyzer reports an alarm for buffer access 2,
which is a true alarm in this case.

C. Selectively Unsound Analysis
Our selectively unsound analyzer applies unsoundness only

to the loops that are likely to remove false alarms only. In
the example program in Figure 1, we ignore the first loop
since analyzing it soundly results in reporting a false alarm
at buffer access 1. The second loop, on the other hand, needs
to be analyzed soundly, since it has the possibility of causing
an actual buffer overflow. The selectively unsound analysis
on the given program corresponds to analyzing the following
program.
str = "hello world";
i = 0;
if(!str[i]) // buffer access 1

skip;

size = positive_input();
for(i = 0; i < size; i++)

skip;

... = str[i]; // buffer access 2

Note that we only unroll the first loop, not the second loop.
By being unsound for the first loop and sound for the second
loop, the analysis is able to report the true alarm for buffer
access 2 while avoiding the false alarm for buffer access 1.

무해한�순환문�
- termination�with�null�check�
- iteration�on�a�finite�string�
- no�global�variables�
- …

학습

• 전형성�검출에�특화된�학습�알고리즘�(OC-SVM)�사용�

• 전형적이면�무해,�비전형적이면�유해�

• 일반�SVM�에�비해�전형성�검출�성능�우수

28

무해 유해

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

Tr

ue
 A

la
rm

s

Trials

Selective
Binary
RandA
RandB

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10

Fa

ls
e

Al
ar

m
s

Trials

Selective
Binary
RandA
RandB

Fig. 7. Comparison between SELECTIVE, BINARY, RANDA, and RANDB

it is still insignificant since both of them are much more
imprecise than our system.

D. Feature Design

1) Wining Features: The learned classifier tells us which
feature is most useful for learning harmless unsoundness. The
features we used capture general characteristics of harmless
program components. In order to determine the ordering of
features, we used information gain which is the expected
reduction in entropy when a feature is used to classify training
examples (in classification, low entropy, i.e., impure data, is
preferred) [16].

The results show that harmless loops tend to have point-
ers iteratively accessing (PtrInc) arrays (Array) or strings
(FinString) with loop conditions that compare array contents
with null (Null) or constant values (Const). These features
collectively describe loops like the first example loop in
Section II. The result also shows that most harmless library
calls for the interval analysis return integer values (Int) and
manipulate strings (CString). This is because our interval
analyzer aggressively abstracts string values, so unsound treat-
ment of string libraries (e.g., strlen, strcat) is likely
to improve the analysis precision. For the taint analysis, the
results show that library calls with less arguments (#Args) and
abstract locations (#AbsLoc) (e.g., random, strlen) are
likely to be irrelevant to propagation of user inputs compared
to ones with more arguments (e.g., fread, recv).

2) Different Feature Sets: We measured the performance of
the classifier with less features in three ways: 1) with syntactic
features only; 2) with semantic features only; and 3) with
randomly-chosen half of the features. For the interval analyzer,
the classifier learned with only syntactic features reported 1%
more bugs but 26% more false alarms than the classifier with
all features, the classifier with only semantic features reported
1% more false alarms and missed 41% more bugs, and the
classifier with half of the features reported 17% more false
alarms and missed 1% more bugs on average.

E. Time Cost

We measured how long it takes to run each analysis on our
benchmark programs and compare it with the time that our

selective unsound analysis takes. For the benchmark programs
in Table I, the sound interval analysis BASELINE took 42.1
seconds for analyzing all the listed programs, UNIFORM only
took 27.7 seconds, reducing the total time by 14.4 seconds
(34.2%). SELECTIVE took 33.8 seconds, reducing the total
time by 8.3 seconds (19.7%). RANDA and RANDB took
longer than SELECTIVE: 35.4 and 37.5 seconds, respectively.
In summary, SELECTIVE takes less time than BASELINE,
RANDA, and RANDB.

F. Discussion
As addressed in the experiments, our technique may miss

some true alarms which can be detected by the fully sound
analysis or fail to avoid some false alarms which are not
reported by the fully unsound analysis. In this section, we
discuss why these limitations occur and how to overcome.

1) Remaining False Alarms: Compared to the fully un-
sound analysis, our technique reports more false alarms. It
is mainly because reporting the false alarms is inevitable in
order to detect true alarms. Consider the following example
program excerpted from SM-5:

1 size = 10 + positive_input();
2 arr = malloc(size);
3

4 for(i = 0; i < size; i++){
5 arr[i] = ... // buffer access 1
6 arr[i+1] = ... // buffer access 2
7 }

By soundly analyzing the loop, the analysis reports an alarm
for the buffer-overflow bug at line 6 at the cost of a false alarm
at line 5. The unsound analysis removes the false alarm, but it
also fails to report the true alarm. Our selective method may
decide to analyze such a loop soundly in order to detect the
bug, even though reporting the false alarm is inevitable.

We found that these inevitable false alarms are the primary
reason for SELECTIVE to report more false alarms compared to
UNIFORM. For example, when analyzing SM-5 in our bench-
mark programs, five among six false alarms are inevitable.
In order to remove such false alarms in a harmless way, we
need a more fine-grained parameter space for soundness so
that we can apply different degrees of soundness to different
statements in a single loop, which would be an interesting
future direction to investigate.

2) Missing True Alarms: Compared to the fully sound
analysis, our technique reports less true alarms. It is mainly
because the bugs are involved in typically-harmless loops.
Consider the following code snippet from man-1.5h1:

1 char arr[10] = ‘‘string’’;
2 size = positive_input();
3 for (i = 0; i < size; i ++)
4 skip;
5 arr[i] = 0; // buffer access 1
6

7 for(i = 0; !arr[i]; i++)// buffer access 2
8 skip;

The two buffer access expressions both contain buffer overflow
bugs. However, our technique detects the first bug, but not the

중요한�특질

29

int r = lib1();
lib2(str1, str2);

• 구간(interval)�분석�

• 유한�문자열을�훑는�순환문�

• 숫자를�리턴하거나�문자열을�받는�라이브러리�호출

str = “hello world”;
for (p = str; *p; p++)
...

30

str = “hello world”;
for (p = str; *p; p++)
...

finite string

array access ptr increment

int r = lib1();
lib2(str1, str2); str manipulation

return integer

중요한�특질

• 구간(interval)�분석�

• 유한�문자열을�훑는�순환문�

• 숫자를�리턴하거나�문자열을�받는�라이브러리�호출

중요한�특질

31

• 오염(taint)�분석�

• 사용자�입력을�전달하지�않는�라이브러리�호출

r1 = random();
r2 = strlen(s)

r3 = fread(fd,buf,len)
r4 = recv(s,len,flags)

32

r1 = random();
r2 = strlen(s)

arguments,
#abs. locations

r3 = fread(fd,buf,len)
r4 = recv(s,len,flags)<

arguments,
#abs. locations

중요한�특질

• 오염(taint)�분석�

• 사용자�입력을�전달하지�않는�라이브러리�호출

후속�연구

• 기계�학습을�위한�특질�자동�생성�

• 특질:�해당�분석의�핵심을�드러내는�(작은)�프로그램

33

/* real code */
pos = 0;
path = malloc(tmp);
path_len = tmp;
file = str_make(0);
if (*){
while(pos < path_len){
path[pos] = 1;
str_add_char(path,pos);
str_buf = nstr_to_str(path);
pos++;

}
}

/* example */
arr = malloc(size);
i = 0;
while(i < size){
arr[i] = 0;
i++;

}

후속�연구

• 기계�학습을�위한�특질�자동�생성�

• 특질:�해당�분석의�핵심을�드러내는�(작은)�프로그램

34

/* real code */
pos = 0;
path = malloc(tmp);
path_len = tmp;
file = str_make(0);
if (*){
while(pos < path_len){
path[pos] = 1;
str_add_char(path,pos);
str_buf = nstr_to_str(path);
pos++;

}
}

/* example */
arr = malloc(size);
i = 0;
while(i < size){
arr[i] = 0;
i++;

}

≿

후속�연구

• 분석기에�타이머�(제한시간)�달기�

• 실시간�스케줄링:�남은�시간에�따라�정확도를�조절

35

정리

•선별적으로�안전성을�조절하는�정적�분석기�

• 획일적으로�안전�/�불안전한�분석기보다�효과적�

• 기계학습을�이용하여�자동,�체계적으로�안전성을�조절

36

Sound Uniformly UnsoundSelectively Unsound

program statesprogram statesprogram states

37

Sound Uniformly UnsoundSelectively Unsound

program statesprogram statesprogram states

고맙습니다

•선별적으로�안전성을�조절하는�정적�분석기�

• 획일적으로�안전�/�불안전한�분석기보다�효과적�

• 기계학습을�이용하여�자동,�체계적으로�안전성을�조절

정리

