
1

Adaptive Static Analysis via Learning with Bayesian
Optimization

KIHONG HEO, Seoul National University

HAKJOO OH∗, Korea University

HONGSEOK YANG, University of Oxford

KWANGKEUN YI, Seoul National University

Building a cost-e�ective static analyzer for real-world programs is still regarded an art. One key contributor

to this grim reputation is the di�culty in balancing the cost and the precision of an analyzer. An ideal analyzer

should be adaptive to a given analysis task, and avoid using techniques that unnecessarily improve precision

and increase analysis cost. However, achieving this ideal is highly nontrivial, and it requires a large amount of

engineering e�orts.

In this paper, we present a new learning-based approach for adaptive static analysis. In our approach,

the analysis includes a sophisticated parameterized strategy that decides, for each part of a given program,

whether to apply a precision-improving technique to that part or not. We present a method for learning a

good parameter for such a strategy from an existing codebase via Bayesian optimization. �e learnt strategy is

then used for new, unseen programs. Using our approach, we developed partially �ow- and context-sensitive

variants of a realistic C static analyzer. �e experimental results demonstrate that using Bayesian optimization

is crucial for learning from an existing codebase. Also, they show that among all program queries that require

�ow- or context-sensitivity, our partially �ow- and context-sensitive analysis answers the 75% of them, while

increasing the analysis cost only by 3.3x of the baseline �ow- and context-insensitive analysis, rather than 40x

or more of the fully sensitive version.

CCS Concepts: •�eory of computation→Program analysis; •Computingmethodologies→Machine
learning approaches;

Additional Key Words and Phrases: Static Program Analysis, Data-driven program analysis, Bayesian opti-

mization

ACM Reference format:
Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. 2016. Adaptive Static Analysis via Learning

with Bayesian Optimization. ACM Trans. Program. Lang. Syst. 1, 1, Article 1 (January 2016), 36 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Although the area of static program analysis has progressed substantially in the past two decades,

building a cost-e�ective static analyzer for real-world programs is still regarded an art. One key

contributor to this grim reputation is the di�culty in balancing the cost and the precision of an

analyzer. An ideal analyzer should be able to adapt to a given analysis task automatically, and avoid

∗
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2016 ACM. 0164-0925/2016/1-ART1 $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:2 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

using techniques that unnecessarily improve precision and increase analysis cost. However, design-

ing a good adaptation strategy is highly nontrivial, and it requires a large amount of engineering

e�orts.

In this paper we present a new approach for building an adaptive static analyzer, which can

learn its adaptation strategy from an existing codebase. In our approach, the analyzer includes a

parameterized strategy that decides, for each part of a given program, whether to apply a precision-

improving technique to that part or not. �is strategy is de�ned in terms of a function that scores

parts of a program. �e strategy evaluates parts of a given program using this function, chooses

the top k parts for some �xed k , and applies the precision-improving technique to these parts only.

�e parameter of the strategy controls this entire selection process by being a central component

of the scoring function.

Of course, the success of such an analyzer depends on �nding a good parameter for its adaptation

strategy. We describe a method for learning such a parameter from an existing codebase using

Bayesian optimization; the learnt parameter is then used for new, unseen programs. As typical in

other machine learning techniques, this learning part is formulated as an optimization problem: �nd

a parameter that maximizes the number of queries in the codebase which are proved by the analyzer.

�is is a challenging optimization problem because evaluating its objective function involves

running the analyzer over several programs and so it is expensive. We present an (approximate)

solver for the problem that uses the powerful Bayesian optimization technique and avoids expensive

calls to the program analyzer as much as possible.

Note that this learning component involves generalization, but the kind not o�en seen explicitly

in other work on program analysis. It collects information about a program analyzer from given

programs, and generalizes this information with the purpose of predicting which parameter would

lead to a good adaptation strategy for unseen programs. �is cross-program generalization of a

property of an analysis itself is absent in most existing program analyzers. For instance, popular

proposals for building adaptive program analyzers, such as counter-example-driven abstraction

re�nement (e.g., [39]) and parametric program analysis [15, 40], are based on the idea of gathering

information about a given program and a veri�cation task by a relatively quick (static or dynamic)

program analyzer, and adapting the main analyzer based on this information. �e scope of the

generalization here is a single program, and the target is properties of this program. It is also

mentioning that many prior a�empts of using machine learning techniques in program analysis

o�en fall into this single-program generalization, where generalization is done by existing machine

learning algorithms. Our work suggests the value of studying the new type of cross-program gen-

eralization on properties of an analyzer, and provides one concrete instance of such generalization

based on Bayesian optimization.

Using our approach, we developed partially �ow-sensitive and context-sensitive variants of a

realistic C program analyzer. �e experimental results con�rm that using an e�cient optimization

solver such as ours based on Bayesian optimization is crucial for learning a good parameter from

an existing codebase; a naive approach for learning simply does not scale. When our partially �ow-

and context-sensitive analyzer was run with a learnt parameter, it answered the 75% of the program

queries that require �ow- or context-sensitivity, while increasing the analysis cost only by 3.3x of

the �ow- and context-insensitive analysis, rather than 40x or more of the fully sensitive version.

We also apply our approach for choosing an e�ective set of widening thresholds, which also shows

the great bene�t of the approach.

Contributions. We summarize our contributions below:

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:3

• We propose a new approach for building a program analysis that can adapt to a given veri�-

cation task. �e key feature of our approach is that it can learn an adaptation strategy from

an existing codebase automatically, which can then be applied to new unseen programs.

• We present an e�ective method for learning an adaptation strategy. Our method uses

powerful Bayesian optimization techniques, and reduces the number of expensive program-

analysis runs on given programs during the learning process. �e performance gain by

Bayesian optimization is critical for making our approach practical; without it, learning

with medium-to-large programs takes too much time.

• We describe three instance analyses of our approach, which are adaptive variants of our

program analyzer for C programs. �e �rst adapts the degree of �ow sensitivity of the

analyzer, the second adapts context sensitivity of the analyzer, and the last adaptively

chooses widening thresholds. In all cases, the experiments show the clear bene�ts of our

approach.

�e present paper extends the previous version [25] in four ways:

(1) We present a new idea for improving the e�ciency of the learning algorithm (Section 5.4

and 7.4). �e technique is based on the idea of ordinal optimization, and reduces the cost of

evaluating the objective function of our learning algorithm.

(2) We provide a new instance of our approach and its experimental results (Section 6.3 and

7.3). We have applied our method to adaptively choosing threshold values for widening of

an interval analysis, showing that our method is generally applicable to various analysis

instances.

(3) We also show the generality of our approach by applying it to a new client analysis

(Section 7.1). In the previous version [25], we evaluated the performance only for a bu�er-

overrun client. �is paper shows that our method is also applicable to the detection of

null-dereference errors.

(4) Lastly, we experimentally compare our algorithm with Bayesian optimization with other

discrete optimization algorithms such as Basin-hopping [38] and Di�erential evolution [37]

(Section 7.5). �e results show that using Bayesian optimization is much more e�ective

than other methods for the program-analysis application, mainly because the objective

function in this case is very expensive to evaluate.

2 OVERVIEW
We illustrate our approach using a static analysis with the interval domain. Consider the following

program.

x=0; y=0; z=1;
x=z;
z=z+1;
y=x;
assert(y>0);

�e program has three variables (x , y, and z) and the goal of the analysis is to prove that the

assertion at line 5 holds.

2.1 Partially Flow-Sensitive Analysis
Our illustration uses a partially �ow-sensitive analysis. Given a set of variables V , it tracks the
values of selected variables in V �ow-sensitively, but for the other variables, it computes global

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:4 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

�ow-insensitive invariants of their values. For instance, when V = {x ,y}, the analysis computes

the following results:

�ow-sensitive �ow-insensitive

line abstract state abstract state

1 {x 7→ [0, 0], y 7→ [0, 0]}
2 {x 7→ [1,+∞],y 7→ [0, 0]}
3 {x 7→ [1,+∞],y 7→ [0, 0]} {z 7→ [1,+∞]}
4 {x 7→ [1,+∞],y 7→ [1,+∞]}
5 {x 7→ [1,+∞],y 7→ [1,+∞]}

�e results are divided into two parts: �ow-sensitive and �ow-insensitive results. In the �ow-

sensitive part, the analysis maintains an abstract state at each program point, where each state

involves only the variables in V . �e information for the other variables (z) is kept in the �ow-

insensitive state, which is a single abstract state valid for the entire program. Note that this partially

�ow-sensitive analysis is precise enough to prove the given assertion; at line 5, the analysis

concludes that y is greater than 0.

In our example, our {x ,y} and the entire set {x ,y, z} are the only choices of V that lead to the

proof of the assertion: with any other choice (V ∈ {∅, {x }, {y}, {z}, {x , z}, {y, z}}), the analysis fails
to prove the assertion. Our analysis adapts to the program here automatically and picks V . We will

next explain how this adaption happens.

2.2 Adaptation Strategy Parameterized with w
Our analysis employs a parameterized strategy (or decision rule) for selecting a set V of variables

that will be treated �ow-sensitively. �e strategy is a function of the form:

Sw : Pgm→ ℘(Var)

which is parameterized by a vector w of real numbers.

Given a program to analyze, our strategy works in three steps:

(1) We represent all the variables of the program as feature vectors.

(2) We then compute the score of each variable x , which is just the linear combination of the

parameter w and the feature vector of x .
(3) We choose the top-k variables based on their scores, where k is speci�ed by users. In this

example, we use k = 2.

Step 1: Extracting Features. Our analysis uses a pre-selected set π of features, which are just

predicates on variables and summarize syntactic or semantic properties of variables in a given

program. For instance, a feature πi ∈ π indicates whether a variable is a local variable of a function

or not. �ese feature predicates are chosen for the analysis, and reused for all programs. �e details

of the features that we used are given in later sections of this paper. In the example of this section,

let us assume that our feature set π consists of �ve predicates:

π = {π1,π2,π3,π4,π5}.

Given a program and a feature set π , we can represent each variable x in the program as a feature

vector π (x):

π (x) = 〈π1 (x),π2 (x),π3 (x),π4 (x),π5 (x)〉

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:5

Suppose that the feature vectors of variables in the example program are as follows:

π (x) = 〈1, 0, 1, 0, 0〉
π (y) = 〈1, 0, 1, 0, 1〉
π (z) = 〈0, 0, 1, 1, 0〉

Step 2: Scoring. Next, we computes the scores of variables based on the feature vectors and the

parameter w. �e parameter w is a real-valued vector that has the same dimension as the feature

vector, i.e., in this example, w ∈ R5 for R = [−1, 1]. Intuitively, w encodes the relative importance

of each feature.

Given a parameter w ∈ R5, e.g.,

w = 〈0.9, 0.5,−0.6, 0.7, 0.3〉 (1)

the score of variable x is computed as follows:

score(x) = π (x) ·w

In our example, the scores of x , y, and z are:

score(x) = 〈1, 0, 1, 0, 0〉 · 〈0.9, 0.5,−0.6, 0.7, 0.3〉 = 0.3
score(y) = 〈1, 0, 1, 0, 1〉 · 〈0.9, 0.5,−0.6, 0.7, 0.3〉 = 0.6
score(z) = 〈0, 0, 1, 1, 0〉 · 〈0.9, 0.5,−0.6, 0.7, 0.3〉 = 0.1

Step 3: Choosing Top-k Variables. Finally, we choose the top-k variables based on their scores.

For instance, when k = 2, we choose variables x and y in our example. As we have already pointed

out, this is the right choice in our example because analyzing the example program withV = {x ,y}
proves the assertion.

2.3 Learning the Parameter w
Manually �nding a good parameter w is di�cult. We expect that a program analysis based on our

approach uses more than 30 features, so its parameter w lives in Rn for some n ≥ 30. �is is a huge

search space. It is unrealistic to ask a human to acquire intuition on this space and come up with a

right w that leads to a suitable adaptation strategy for most programs in practice.
1

�e learning part of our approach aims at automatically �nding a good w. It takes a codebase

consisting of typical programs, and searches for a parameter w that instantiates an adaptation

strategy appropriately for programs in the codebase: with this instantiation, a program analysis

can prove a large number of queries in these programs.

We explain how our learning algorithm works by using a small codebase that consists of just the

following two programs:

a = 0; b = input();
for (a=0; a<10; a++);
assert (a > 0);

c = d = input();
if (d <= 0) return;
assert (d > 0);

P1 P2

Given this codebase, our learning algorithm looks for w that makes the analysis prove the two

assert statements in P1 and P2. Our intention is to use the learnt w later when analyzing new

1
In our experiments, all manually chosen parameters lead to strategies that perform much worse than the one automatically

learnt by the method in this subsection.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:6 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

(a) (b)

(c) (d)

Fig. 1. A typical scenario on how the probabilistic model gets updated during Bayesian optimization.

unseen programs (such as the example in the beginning of this section). We assume that program

variables in P1 and P2 are summarized by feature vectors as follows:

π (a) = 〈0, 1, 1, 0, 1〉, π (b) = 〈1, 0, 0, 1, 0〉
π (c) = 〈0, 1, 0, 0, 1〉, π (d) = 〈1, 1, 0, 1, 0〉

Simple Algorithm Based on Random Sampling. Let us start with a simple learning algorithm that

uses random sampling. Going through this simple algorithm will help a reader to understand our

learning algorithm based on Bayesian optimization. �e algorithm based on random sampling

works in four steps. Firstly, it generates n random samples in the space R5. Secondly, for each
sampled parameterwi ∈ R

5
, the algorithm instantiates the strategy withwi , runs the static analysis

with the variables chosen by the strategy, and records how many assertions in the given codebase

are proved. Finally, it chooses the parameter wi with the highest number of proved assertions.

�e following table shows the results of running this algorithm on our codebase {P1, P2} with
n = 5. For each sampled parameter wi , the table shows the variables selected by the instantiated

strategy with wi (here we assume that we choose k = 1 variable from each program), and the

number of assertions proved in the codebase.

try sample wi decision #proved

P1 P2 P1 P2
1 -0.0, 0.7, -0.9, 1.0, -0.7 b d 0 1

2 0.2, -0.0, -0.8, -0.5, -0.2 b c 0 0

3 0.4, -0.6, -0.6, 0.6, -0.7 b d 0 1

4 -0.5, 0.5, -0.5, -0.6, -0.9 a c 1 0

5 -0.6, -0.8, -0.1, -0.9, -0.2 a c 1 0

Four parameters achieve the best result, which is to prove one assert statement (either from P1 or
P2). Among these four, the algorithm returns one of them, such as:

w = 〈−0.0,−0.7, 0.9, 1.0,−0.7〉.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:7

Note that this is not an ideal outcome; we would like to prove both assert statements. In order to

achieve this ideal, our analysis needs to select variables a from P1 and d from P2 and treat them

�ow-sensitively. But random searching has low probability for �nding w that leads to this variable

selection. �is shortcoming of random sampling is in a sense expected, and it does appear in

practice. As we show in Figure 2, most of the randomly sampled parameters in our experiments

perform poorly. �us, in order to �nd a good parameter via random sampling, we need a large

number of trials, but each trial is expensive because it involves running a static analysis over all

the programs in a given codebase.

Bayesian optimization. To describe our algorithm, we need to be more precise about the se�ing

and the objective of algorithms for learning w. �ese learning algorithms treat a program analysis

and a given codebase simply as a speci�cation of an (objective) function

F : Rn → N.

�e input to the function is a parameter w ∈ Rn , and the output is the number of queries in the

codebase that are proved by the analysis. �e objective of the learning algorithms is to �ndw∗ ∈ Rn

that maximises the function F :

Find w∗ ∈ Rn that maximises F (w). (2)

Bayesian optimization [3, 18] is a generic algorithm for solving an optimization where an

objective function does not have a nice mathematical structure such as gradient and convexity,

and evaluating this function is expensive. It aims at minimizing the evaluation of the objective

function as much as possible. Notice that our objective function F in (2) lacks good mathematical

structures and is expensive to evaluate, so it is a good target of Bayesian optimization. Also, the aim

of Bayesian optimization is directly related to the ine�ciency of the random-sampling algorithm

mentioned above.

�e basic structure of Bayesian optimization is similar to the random sampling algorithm. It

repeatedly evaluates the objective function with di�erent inputs until it reaches a time limit, and

returns the best input found. However, Bayesian optimization diverges from random sampling in

one crucial aspect: it builds a probability model about the objective function, and uses the model

for deciding where to evaluate the function next. Bayesian optimization builds the model based on

the results of the evaluation so far, and updates the model constantly according to the standard

rules of Bayesian statistics when it evaluates the objective function with new inputs.

In the rest of this overview, we focus on explaining informally how typical Bayesian optimization

builds and uses a probabilistic model, instead of speci�cs of our algorithm. �is will help a reader

to see the bene�ts of Bayesian optimization in our problem. �e full description of our learning

algorithm is given in Section 5.3.

Assume that we are given an objective function G of type R → R. Bayesian optimization

constructs a probabilistic model for this unknown function G, where the model expresses the

optimizer’s current belief about G. �e model de�nes a distribution on functions of type R→ R
(using so called Gaussian process [26]). Initially, it has high uncertainty about what G is, and

assumes that positive outputs or negative outputs are equally possible for G, so the mean (i.e.,

average) of this distribution is the constant zero function λx . 0. �is model is shown in Figure 1(a),

where the large blue region covers typical functions sampled from this model.

Suppose that Bayesian optimization chooses x = 1.0, evaluates G (1.0), and get 0.1 as the output.
�en, it incorporates this input-output pair, (1.0, 0.1), for G into the model. �e updated model is

shown in Figure 1(b). It now says that G (1.0) is de�nitely 0.1, and that evaluating G near 1.0 is
likely to give an output similar to 0.1. But it remains uncertain about G at inputs further from 1.0.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:8 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

Bayesian optimization uses the updated model to decide a next input to use for evaluation. �is

decision is based on balancing two factors: one for exploiting the model and �nding the maximum

ofG (called exploitation), and the other for evaluatingG with an input very di�erent from old ones

and re�ning the model based on the result of this evaluation (called exploration). �is balancing

act is designed so as to minimize the number of evaluation of the objective function. For instance,

Bayesian optimization now may pick x = 5.0 as the next input to try, because the model is highly

uncertain about G at this input. If the evaluation G (5.0) gives 0.8, Bayesian optimization updates

the model to one in in Figure 1. Next, Bayesian optimization may decide to use the input x = 3.0
because the model predicts that G’s output at 3.0 reasonably high on average but it has high

uncertainty around this input. IfG (3.0) = 0.65, Bayesian optimization updates the model as shown

in Figure 1(d). At this point, Bayesian optimization may decide that exploiting the model so far

outweighs the bene�t of exploringG with new inputs, and pick x = 4.0 whereG is expected to give

a high value according to the model. By incorporating all the information about G into the model

and balancing exploration and exploitation, Bayesian optimization fully exploits all the available

knowledge about G, and minimizes the expensive evaluation of the function G.

3 ADAPTIVE STATIC ANALYSIS
We use a well-known setup for building an adaptive (or parametric) program analysis [15]. In this

approach, an analysis has switches for parts of a given program that determine whether these parts

should be analyzed with high precision or not. It adapts to the program by turning on these switches

selectively according to a �xed strategy.
2
For instance, a partially context-sensitive analysis has

switches for call sites of a given program, and use them to select call sites that will be treated with

context sensitivity.

Let P ∈ P be a program that we would like to analyze. We assume a set JP of indices that

represent parts of P . For instance, JP is the set of program variables in our partially �ow-sensitive

analysis. We de�ne a set of abstractions as follows:

a ∈ AP = {0, 1}
JP ,

Abstractions are binary vectors with indices in JP , and are ordered pointwise:

a v a′ ⇐⇒ ∀j ∈ JP . aj ≤ a′j .

Intuitively, JP consists of the parts of P where we have switches for controlling the precision of an

analysis. For instance, in a partially context-sensitive analysis, JP is the set of procedures or call

sites in the program. In our partially �ow-sensitive analysis, it denotes the set of program variables

that are analyzed �ow-sensitively. An abstraction a is just a particular se�ing of the switches

associated with JP , and determines a program abstraction to be used by the analyzer. �us, aj = 1

means that the component j ∈ JP is analyzed, e.g., with context sensitivity or �ow sensitivity. We

sometimes regard an abstraction a ∈ AP as a function from JP to {0, 1}, or the following collection

of P ’s parts:

a = {j ∈ JP | aj = 1}.

In the la�er case, we write |a| for the size of the collection. �e last notation is two constants in

AP :

0 = λj ∈ JP . 0, and 1 = λj ∈ JP . 1,

2
�is type of an analysis is usually called parametric program analysis [15]. We do not use this phrase in the paper to avoid

confusion; if we did, we would have two types of parameters, ones for selecting parts of a given program, and the others for

deciding a particular adaption strategy of the analysis.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:9

which represent the most imprecise and precise abstractions, respectively. In the rest of this paper,

we omit the subscript P when there is no confusion.

We assume that a set of assertions is given together with P . �e goal of the analysis is to prove

as many assertions as possible. An adaptive static analysis is modeled as a function:

F : Pgm × A → N.

Given an abstraction a ∈ A, F (P , a) returns the number of assertions proved under the abstraction

a. Usually, the used abstraction correlates the precision and the performance of the analysis. In

this paper, we generally assume that using a more re�ned abstraction is likely to improve the

precision of the analysis but increase its cost
3
, which generally holds in static analysis for the C

programming languages. However, in other analyses, e.g., for Java, more precise analysis could lead

to be�er scalability as more spurious paths are eliminated during the analysis. �us, most existing

adaptation strategies aim at �nding a small a that makes the analysis prove as many queries as the

abstraction 1.

3.1 Goal
Our goal is to learn a good adaptation strategy automatically from an existing codebase P =
{P1, . . . , Pm } (that is, a collection of programs). A learnt strategy is a function of the following

type:
4

S : Pgm→ A,

and is used to analyse new, unseen programs P ;

F (P ,S (P)).

If the learnt strategy is good, running the analysis with S (P) would give results close to those of

the most precise abstraction (F (P , 1)), while incurring the cost at the level of or only slightly above

the least precise and hence cheapest abstraction (F (P , 0)).
In the rest of the paper, we explain how we achieve this goal. We �rst de�ne a parameterized

adaptation strategy that scores program parts based on a parameterized linear function and selects

high scorers for receiving precise analysis (Section 4). Next, we present a learning algorithm via

Bayesian optimization for �nding good parameter values from the codebase (Section 5).

4 PARAMETERIZED ADAPTATION STRATEGY
In this section, we explain a parameterized adaptation strategy, which de�nes our hypothesis

spaceH mentioned in the previous section. Intuitively, this parameterized adaptation strategy is a

template for all the candidate strategies that our analysis can use when analyzing a given program,

and its instantiations with di�erent parameter values formH .

Recall that for a given program P , an adaption strategy chooses a set of components of P that

will be analyzed with high precision. As explained in Section 2.2, our parameterized strategy makes

this choice in three steps. We formalize these steps next.

3
If a v a′, we typically have F (P, a) ≤ F (P, a′), but performing F (P, a′) costs more than performing F (P, a).

4
Strictly speaking, the set of abstractions varies depending on a given program, so a strategy is a dependently-typed

function and maps a program to one of the abstractions associated with the program. We elide this distinction to simplify

presentation.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:10 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

Program #Var Flow-insensitivity Flow-sensitivity Minimal �ow-sensitivity

proved time(s) proved time(s) time(s) size

time-1.7 353 36 0.1 37 0.4 0.1 1 (0.3%)

spell-1.0 475 63 0.1 64 0.8 0.1 1 (0.2%)

barcode-0.96 1,729 322 1.1 335 5.7 1.0 5 (0.3%)

archimedes 2,467 423 5.0 1110 28.1 4.2 104 (4.2%)

tar-1.13 5,244 301 7.4 469 316.1 8.9 75 (1.4%)

TOTAL 10,268 1,145 13.7 2,015 351.1 14.3 186 (1.8%)

Table 1. The minimal flow-sensitivity for interval abstract domain is significantly small. #Var shows the
number of program variables (abstract locations) in the programs. proved and time show the number of
proved bu�er-overrun queries in the programs and the running time of each analysis. Minimal flow-sensitivity
proves exactly the same queries as the flow-sensitivity while taking analysis time comparable to that of
flow-insensitivity.

4.1 Feature Extraction
Given a program P , our parameterized strategy �rst represents P ’s components by so called feature

vectors. A feature πk is a predicate on program components:

πkP : JP → {0, 1} for each program P .

For instance, when components in JP are program variables, checking whether a variable j is a
local variable or not is a feature. Our parameterized strategy requires that a static analysis comes

with a collection of features:

πP = {π
1

P , . . . ,π
n
P }.

Using these features, the strategy represents each program component j in JP as a boolean vector

as follows:

πP (j) = 〈π
1

P (j), . . . ,π
n
P (j)〉.

We emphasize that the same set of features is reused for all programs, as long as the same static

analysis is applied to them.

As in any other machine learning approaches, choosing a good set of features is critical for the

e�ectiveness of our learning-based approach. We discuss our choice of features for two instance

program analyses in Section 6. According to our experience, �nding these features required e�orts,

but was not di�cult, because the used features were mostly well-known syntactic properties of

program components.

4.2 Scoring
Next, our strategy computes the scores of program components using a linear function of feature

vectors: for a program P ,

scorewP : JP → R

scorewP (j) = πP (j) ·w.

Here we assume R = [−1, 1] and w ∈ Rn is a real-valued vector with the same dimension as

the feature vector. �e vector w is the parameter of our strategy, and determines the relative

importance of each feature when our strategy chooses a set of program components.

We extend the score function to abstractions a:

scorewP (a) =
∑

j ∈JP ∧ a(j)=1

scorewP (j),

which sums the scores of the components chosen by a.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:11

4.3 Selecting Top-k Components
Finally, our strategy selects program components based on their scores, and picks an abstraction

accordingly. Given a �xed k ∈ R (0 ≤ k ≤ 1), it chooses bk × |JP |c components with highest scores.

For instance, when k = 0.1, it chooses the top 10% of program components. �en, the strategy

returns an abstraction a that maps these chosen components to 1 and the rest to 0.

LetAk
be the set of abstractions that contains bk × |JP |c elements when viewed as a set of j ∈ JP

with aj = 1:

Ak = {a ∈ A | |a| = bk × |JP |c}

Formally, our parameterized strategy Sw : Pgm→ Ak
is de�ned as follows:

Sw (P) = argmax

a∈Ak
P

scorewP (a) (3)

�at is, given a program P and a parameter w, it selects an abstraction a ∈ Ak
with maximum

score.

A reader might wonder which k value should be used. In our case, we set k close to 0 (e.g.

k = 0.1) so that our strategy choose a small and cheap abstraction. Typically, this in turn entails a

good performance of the analysis with the chosen abstraction.

Using such a small k is based on a conjecture that for many veri�cation problems, the sizes of

minimal abstractions su�cient for proving these problems are signi�cantly small. One evidence

of this conjecture is given by [15], who presented algorithms to �nd minimal abstractions (the

coarsest abstraction su�cient to prove all the queries provable by the most precise abstraction)

and showed that, in a pointer analysis used for discharging queries from a race detector, only a

small fraction (0.4–2.3%) of call-sites are needed to prove all the queries provable by 2-CFA analysis.

We also observed that the conjecture holds for �ow-sensitive numeric analysis and bu�er-overrun

queries. We implemented Liang et al.’s ActiveCoarsen algorithm, and found that the minimal

�ow-sensitivity involves only 0.2–4.2% of total program variables, which means that we can achieve

the precision of full �ow-sensitivity with a cost comparable to that of �ow-insensitivity (see Table

1).

5 OUR LEARNING ALGORITHM
We present our approach for learning a parameter of the adaptation strategy. We formulate the

learning process as an optimization problem, and solve it e�ciently via the techniques of Bayesian

optimization and ordinal optimization.

5.1 The Optimization Problem
In our approach, learning a parameter from a codebase P = {P1, . . . , Pm } corresponds to solving

the following optimization problem. Let n be the number of features of our strategy in Section 4.1.

�en, the optimization problem is described as follows:

Find w∗ ∈ Rn that maximizes

∑
Pi ∈P

F (Pi ,Sw∗ (Pi)). (4)

�at is, the goal of the learning is to �nd w∗ that maximizes the number of proved queries on

programs in P when these programs are analyzed with the strategy Sw∗ . However, solving this

optimization problem exactly is impossible. �e objective function involves running static analysis

F over the entire codebase, which is very expensive to evaluate in realistic se�ings. Furthermore,

it lacks a good structure—it is not convex and does not even have a derivative. �us, we lower

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:12 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

Algorithm 1 Learning via Random Sampling

Input: codebase P and static analysis F
Output: best parameter w ∈ Rn found

1: wmax ← sample from Rn (R = [−1, 1])
2: max ←

∑
Pi ∈P F (Pi ,Swmax (Pi))

3: repeat
4: w← sample from Rn

5: s =
∑

Pi ∈P F (Pi ,Sw (Pi))
6: if s > max then
7: max ← s
8: wmax ← w
9: end if
10: until timeout

11: return wmax

our aim slightly, and look for an approximate answer, i.e., a parameter w that makes the objective

function close to its maximal value.

5.2 Learning via Random Sampling
We begin with a simple method for approximately solving the problem in (4), based on random

sampling (Algorithm 1). �is random-sampling method works by repeatedly applying the following

steps:

(1) Pick a parameter w ∈ Rn randomly, where n is the number of features.

(2) Instantiate the parameterized strategy S with the w.

(3) Run the static analysis with the instantiation Sw over the codebase, and compute the

number s of proved queries:

s =
∑
Pi ∈P

F (Pi ,Sw (Pi)).

We repeat this procedure until we exhaust our budget for time, and choose the w with the highest

s among all samples. Algorithm 1 describes this method.

Although the method is simple and easy to implement, it is extremely ine�cient according to

our experience. �e ine�ciency is twofold. First, in our experiments, most of randomly sampled

parameters have poor qualities, failing to prove the majority of queries on programs in P (Section

7.1). Second, evaluating the objective function in a realistic se�ing is very expensive because it

involves running static analysis over the entire codebase. �us, in order to �nd a good parameter

using this method, we need to evaluate the expensive objective function many times, which is not

feasible in reality.

In the rest of this section, we improve the performance of this baseline algorithm with two

techniques:

• We use Bayesian optimization (Section 5.3) to �nd a good parameter without evaluating

the objective function many times.

• We use ordinal optimization (Section 5.4) to reduce the cost of evaluating the objective

function while retaining the �nal quality of the learning algorithm.

Note that the two techniques are orthogonal to each other; the algorithm intertwined with two

techniques is be�er than the one with a single technique only.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:13

Algorithm 2 Learning via Bayesian optimization

Input: codebase P and static analysis F
Output: best parameter w ∈ Rn found

1: Θ← ∅
2: for i ← 1, t do . random initialization

3: w← sample from Rn

4: s =
∑

Pi ∈P F (Pi ,Sw (Pi))
5: Θ← Θ ∪ {〈w, s〉}
6: end for
7: 〈wmax ,max〉 ← 〈w, s〉 ∈ Θ s.t. ∀〈w′, s ′〉 ∈ Θ. s ′ ≤ s
8: repeat
9: update the modelM by incorporating new data Θ (i.e., compute the posterior distribution

ofM given Θ, and setM to this distribution)

10: w = argmaxw∈Rn acq(w,Θ,M)
11: s =

∑
Pi ∈P F (Pi ,Sw (Pi))

12: Θ← {〈w, s〉}
13: if s > max then
14: max ← s
15: wmax ← w
16: end if
17: until timeout

18: return wmax

5.3 Learning via Bayesian Optimization
Bayesian optimization is a powerful method for solving di�cult optimization problems where

objective functions are expensive to evaluate [3] and do not have good structures, such as deriva-

tive. Typically, optimizers for such a problem work by evaluating its optimization function with

many di�erent inputs and returning the input with the best output. �e key idea of Bayesian

optimization is to reduce this number of evaluations by constructing and using a probabilistic

model for the objective function. �e model de�nes a probability distribution on functions, predicts

what the objective function looks like (i.e., mean of the distribution), and describes uncertainty

on its prediction (i.e., variance of the distribution). �e model gets updated constantly during the

optimization process (according to Bayes’s rule), such that it incorporates the results of all the

previous evaluations of the objective function. �e purpose of the model is, of course, to help the

optimizer pick a good input to evaluate next, good in the sense that the output of the evaluation

is large and reduces uncertainty of the model considerably. We sum up our short introduction to

Bayesian optimization by repeating its two main components in our program-analysis application:

(1) Probabilistic modelM: Initially, this modelM is set to capture a prior belief on properties

of the objective function in (4), such as its smoothness. During the optimization process, it

gets updated to incorporate the information about all previous evaluations.
5

(2) Acquisition function acq: GivenM, this function gives each parameter w a score that

re�ects how good the parameter is. �is is an easy-to-optimize function that serves as a

proxy for our objective function in (4) when our optimizer chooses a next parameter to try.

�e function encodes a success measure on parametersw that balances two aims: evaluating

5
In the jargon of Bayesian optimization or Bayesian statistics, the initial model is called a prior distribution, and its updated

versions are called posterior distributions.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:14 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

our objective function with w should gives a large value (o�en called exploitation), and at

the same time help us to re�ne our modelM substantially (o�en called exploration).

Algorithm 2 shows our learning algorithm based on Bayesian optimization. At lines 2-5, we �rst

perform random sampling for t times, and stores the pairs of parameter w and score s in Θ (line 5).

At line 7, we pick the best parameter and score in Θ. �e main loop is at lines from 8 to 17. At line

9, we build the probabilistic modelM from the collected data Θ. At line 10, we select a parameter

w by maximizing the acquisition function.
6
�is takes some computation time but is insigni�cant

compared to the cost of evaluating the expensive objective function (running static analysis over

the entire codebase). Next, we run the static analysis with the selected parameter w, and update

the data (line 12). �e loop repeats until we run out of our �xed time budget, at which point the

algorithm returns the best parameter found.

Algorithm 2 leaves open the choice of a probabilistic model and an acquisition function, and its

performance depends on making a right choice. We have found that a popular standard option

for the model and the acquisition function works well for us—the algorithm with this choice

outperforms the naive random sampling method substantially. Concretely, we used the Gaussian

Process (GP) [26] for our probabilistic model, and the expected improvement (EI) [3] for the

acquisition function
7
.

A Gaussian Process (GP) is a well-known probabilistic model for functions to real numbers. Due

to its �exibility and tractability, GP is currently the most popular model for estimating real-valued

functions [3]. In our se�ing, these functions are maps from parameters to reals, with the type

Rn → R. Also, a GP G is a function-valued random variable such that for all o ∈ N and parameters

w1, . . . ,wo ∈ R
n
, the results of evaluating F at these parameters

〈G (w1), . . . ,G (wo)〉

are distributed according to the o-dimensional Gaussian distribution
8
with mean µ ∈ Ro and

covariance matrix Σ ∈ Ro×o , both of which are determined by two hyperparameters to the GP. �e

�rst hyperparameter is a mean functionm : Rn → R, and it determines the mean µ of the output
of G at each input parameter:

µ (w) =m(w) for all w ∈ Rn .

�e second hyperparameter is a symmetric function k : Rn ×Rn → R, called kernel, and it speci�es
the smoothness of G: for each pair of parameters w and w′, k (w,w′) describes how close the

outputsG (w) andG (w′) are. If k (w,w′) is positive and large,G (w) andG (w′) have similar values

for most random choices of G. However, if k (w,w′) is near zero, the values of G (w) and G (w′)
do not exhibit such a close relationship. In our experiments, we adopted the common choice for

hyperparameters and initialized a GP as follows:

m = λw. 0, k (w,w′) = exp(−||w −w′ ||2/2).

6
We used the limited-memory BFGS (L-BFGS) algorithm for computing the argmax of the acquisition function. �is is an

approximation algorithm that follows the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.

7
We also tried other options for the acquisition function such as probability of improvement (PI) and upper con�dence

bound (UCB) [3]. Compared to the method with EI, the other methods yield only less than 1% degradation in terms of

proven queries.

8
A random variable x with value in Ro is a o-dimensional Gaussian random variable with mean µ ∈ Ro and covariance

matrix Σ ∈ Ro×o if it has the following probability density:

p (x) = (2π)−
o
2 × |Σ |−

1

2 × exp

(
−
(x − µ)T Σ−1 (x − µ)

2

)

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:15

Incorporating data to the GPG withm and k above is done by computing the so called posterior of

G with respect to the data. Suppose that we have evaluated our objective function with parameters

w1, . . . ,wt and obtained the values of the function s1, . . . , st . �e value si represents the number

of proved queries when the static analysis is run with parameter wi over the given codebase. Let

Θ = {〈wi , si 〉 | 1 ≤ i ≤ n}. �e posterior ofG with respect toΘ is a probability distribution obtained

by updating the one for G using information in Θ. It is well-known that this posterior distribution

p (G | Θ) is again a GP and has the following mean and kernel functions:

m′(w) = kK−1sT

k ′(w,w′) = k (w,w′) − kK−1k′T

where

k = [k (w,w1) k (w,w2) . . . k (w,wt)]

k′ = [k (w′,w1) k (w′,w2) . . . k (w′,wt)]

s = [s1 s2 . . . st]

K =



k (w1,w1) . . . k (w1,wt)
...

. . .
...

k (wt ,w1) . . . k (wt ,wt)


Figure 1 shows the outcomes of three posterior updates pictorially. It shows four regions that

contain most of functions sampled from GPs.

�e acquisition function for expected improvement (EI) is de�ned as follows:

acq(w,Θ,M) = E[max(F (w) − smax, 0) | Θ]. (5)

�e expected value here is de�ned w.r.t. the probabilisitic model, GP, and the previously seen dataΘ.
Here smax is the maximum score seen in the data Θ so far (i.e., smax = max {si | ∃wi . 〈wi , si 〉 ∈ Θ}),
and G is a random variable distributed according to the GP posterior with respect to Θ and is our

model for the objective function. �e formula max(G (w) − smax, 0) in the equation (5) measures the

improvement in the maximum score when the objective function is evaluated at w. �e right hand

side of the equation computes the expectation of this improvement, justifying the name “expected

improvement”. �e further discussion on this acquisition function can be found in Section 2.3

of [3].

5.4 Learning with Ordinal Optimization
Now, we apply the idea of ordinal optimization [6, 12] to reduce the cost of evaluating the objective

function. Although the learning algorithm via Bayesian optimization is much more e�cient than

random sampling, it still requires costly evaluation of the objective function. For the evaluation, it

runs static analysis over the entire codebase, which is o�en infeasible in realistic se�ings. However,

note that our aim is not to obtain the accurate value of each evaluation, but to choose one that is

relatively be�er than other possible alternatives. In this case, ordinal optimization helps to reduce

the cost of the objective function with li�le compromise on the �nal quality of the parameters

found.

A key idea of ordinal optimization is that order is much easier to estimate than cardinal values.

Let us illustrate it in the context of our learning algorithm. Without loss of generality, the essence

of the learning algorithm can be described as follows:

(1) Sample two parameters w1 and w2.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:16 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

(2) Compute their scores s1 = J (w1) and s2 = J (w2), where J is the objective function:

J (w) =
∑
Pi ∈P

F (Pi ,Sw (Pi)).

(3) Choose w1 if s1 ≥ s2 and w2 otherwise.

Note that what is important in this entire process is the order of the performance values (s1 and s2),
not the concrete values of them. �erefore, we focus on estimating the order between parameters

without exerting to compute the accurate performance values. To this end, we use an approximate

version F̂ of the original static analyzer F such that the order of the estimated values from F̂ is

almost same as the order of the actual values from F ; that is,

F̂ (w1) ≤ F̂ (w2) strongly implies that F (w1) ≤ F (w2) (6)

and vice versa. We substitute F̂ for F in the learning algorithm, which eases the computational

burden of the original objective function. �anks to the order-preserving approximation in (6), the

quality of the parameters found by F̂ is as good as that of the parameters found by F .
We obtain F̂ from F by randomly choosing b|a| ∗ rc components (rather than all of them in a, i.e.,
|a|), where r ∈ [0, 1] is a �xed real number that encodes the degree of the approximation: r is the
ratio of the number of actual elements that are analyzed with high precision to the number of the

total elements in the given abstraction. �en, we run the static analysis by giving high precision

only to these components in JP .

6 INSTANCE ANALYSES
In this section, we present three instance analyses of our approach that adapt the degrees of

�ow-sensitivity, context-sensitivity, and widening thresholds, respectively.

6.1 Adaptive Flow-Sensitive Analysis
We de�ne a class of partially �ow-sensitive analyses, and describe the features used in adaptation

strategies for these analyses.

A Class of Partially Flow-Sensitive Analyses. Given a program P , let (C,→) be its control �ow
graph, where C is the set of nodes (program points) and (→) ⊆ C × C denotes the control �ow

relation of the program.

An analysis that we consider uses an abstract domain that maps program points to abstract

states:

D = C→ S.

Here an abstract state s ∈ S is a map from abstract locations (namely, program variables, structure

�elds and allocation sites) to values:

S = L→ V.

For each program point c , the analysis comes with a function fc : S→ S that de�nes the abstract
semantics of the command at c .
We assume that the analysis is formulated based on an extension of the sparse-analysis frame-

work [23]. Before going into this formulation, let us recall the original framework for sparse

analyses. Let D(c) ⊆ L and U(c) ⊆ L be the def and use sets at program point c ∈ C. Using these
sets, de�ne a relation () ⊆ C × L × C for data dependency:

c0
l
 cn = ∃[c0, c1, . . . , cn] ∈ Paths, l ∈ L

l ∈ D(c0) ∩ U(cn) ∧ ∀0 < i < n. l < D(ci)

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:17

A way to read c0
l
 cn is that cn depends on c0 on location l . �is relationship holds when there

exists a path [c0, c1, . . . , cn] such that l is de�ned at c0 and used at cn , but it is not re-de�ned at any

of the intermediate points ci . A sparse analysis is characterized by the following abstract transfer

function F : D→ D:

F (X) = λc . fc
(
λl .

⊔
c0

l
 c

X (c0) (l)
)
.

�is analysis is fully �ow-sensitive in that it constructs data dependencies for every abstract location

and tracks all these dependencies accurately.

We extend this sparse-analysis framework such that an analysis is allowed to track data de-

pendencies only for abstract locations in some set L ⊆ L, and to be �ow-sensitive only for these

locations. For the remaining locations (i.e., L \ L), we use results from a quick �ow-insensitive

pre-analysis [23], which we assume given. �e results of this pre-analysis form a state sI ∈ S, and
are stable (i.e., pre-�xpoint) at all program points:

∀c ∈ C. fc (sI) v sI

�e starting point of our extension is to de�ne the data-dependency with respect to L:

c0
l
 L cn = ∃[c0, c1, . . . , cn] ∈ Paths, l ∈ L.

l ∈ D(c0) ∩ U(cn) ∧ ∀0 < i < n. l < D(ci)

�e main modi�cation lies in a new requirement that in order for c0
l
 L cn to hold, the location l

should be included in the set L. With this notion of data dependency, we next de�ne an abstract

transfer function:

FL (X) = λc . fc (s
′)

where s ′(l) =



X (c) (l) (l < L)⊔
c0

l
 Lc

X (c0) (l) otherwise

�is de�nition says that when we collect an abstract state right before c , we use the �ow-insensitive
result sI (l) for a location not in L, and follow the original treatment for those in L. An analysis in

our extension computes lfpX0

FL , where the initial X0 ∈ D is built by associating the results of the

�ow-insensitive analysis (i.e., values of sI) with all locations not selected by L (i.e., L \ L):

X0 (c) (l) =

{
sI (l) l < L
⊥ otherwise

Note that L determines the degree of �ow-sensitivity. For instance, when L = L, the analysis
becomes an ordinary �ow-sensitive sparse analysis. On the other hand, when L = ∅, the analysis
is just a �ow-insensitive analysis. �e set L is what we call abstraction in Section 3: abstraction

locations in L form JP in that section, and subsets of these locations, such as L, are abstractions
there, which are expressed in terms of sets, rather than boolean functions. Our approach provides

a parameterized strategy for selecting the set L that makes the analysis comparable to the �ow-

sensitive version for precision and to the �ow-insensitive one for performance. In particular, it

gives a method for learning parameters in that strategy.

Features. �e features for our partially �ow-sensitive analyses describe syntactic or semantic

properties of abstract locations, namely, program variables, structure �elds and allocation sites.

Note that this is what our approach instructs, because these locations form the set JP in Section 3

and are parts of P where we control the precision of an analysis.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:18 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

Type # Features

A 1 local variable

2 global variable

3 structure �eld

4 location created by dynamic memory allocation

5 de�ned at one program point

6 location potentially generated in library code

7 assigned a constant expression (e.g., x = c1 + c2)

8 compared with a constant expression (e.g., x < c)

9 compared with an other variable (e.g., x < y)

10 negated in a conditional expression (e.g., if (!x))

11 directly used in malloc (e.g., malloc(x))

12 indirectly used in malloc (e.g., y = x; malloc(y))

13 directly used in realloc (e.g., realloc(x))

14 indirectly used in realloc (e.g., y = x; realloc(y))

15 directly returned from malloc (e.g., x = malloc(e))

16 indirectly returned from malloc

17 directly returned from realloc (e.g., x = realloc(e))

18 indirectly returned from realloc

19 incremented by one (e.g., x = x + 1)

20 incremented by a constant expr. (e.g., x = x + (1+2))

21 incremented by a variable (e.g., x = x + y)

22 decremented by one (e.g., x = x - 1)

23 decremented by a constant expr (e.g., x = x - (1+2))

24 decremented by a variable (e.g., x = x - y)

25 multiplied by a constant (e.g., x = x * 2)

26 multiplied by a variable (e.g., x = x * y)

27 incremented pointer (e.g., p++)

28 used as an array index (e.g., a[x])

29 used in an array expr. (e.g., x[e])

30 returned from an unknown library function

31 modi�ed inside a recursive function

32 modi�ed inside a local loop

33 read inside a local loop

B 34 1 ∧ 8 ∧ (11 ∨ 12)
35 2 ∧ 8 ∧ (11 ∨ 12)
36 1 ∧ (11 ∨ 12) ∧ (19 ∨ 20)
37 2 ∧ (11 ∨ 12) ∧ (19 ∨ 20)
38 1 ∧ (11 ∨ 12) ∧ (15 ∨ 16)
39 2 ∧ (11 ∨ 12) ∧ (15 ∨ 16)
40 (11 ∨ 12) ∧ 29

41 (15 ∨ 16) ∧ 29

42 1 ∧ (19 ∨ 20) ∧ 33

43 2 ∧ (19 ∨ 20) ∧ 33

44 1 ∧ (19 ∨ 20) ∧ ¬33
45 2 ∧ (19 ∨ 20) ∧ ¬33

Table 2. Features for partially flow-sensitive analysis. Features of Type A denote simple syntactic or semantic
properties for abstract locations (that is, program variables, structure fields and allocation sites). Features of
Type B are various combinations of simple features, and express pa�erns that variables are used in programs.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:19

In our implementation, we used 45 features shown in Table 2, which describe how program

variables, structure �elds or allocation sites are used in typical C programs. When picking these

features, we decided to focus on expressiveness, and included a large number of features, instead of

trying to choose only important features. Our idea was to let our learning algorithm automatically

�nd out such important ones among our features.

Our features are grouped into Type A and Type B in the table. A feature of Type A describes a

simple, atomic property for a program variable, a structure �eld or an allocation site, e.g., whether

it is a local variable or not. A feature of Type B, on the other hand, describes a slightly complex

usage pa�ern, and is expressed as a combination of atomic features. Type B features have been

designed by manually observing typical usage pa�erns of variables in the benchmark programs.

For instance, feature 34 was developed a�er we observed the following usage pa�ern of variables:

int x; // local variable
if (x < 10)

... = malloc (x);

It says that x is a local variable, and gets compared with a constant and passed as an argument to a

function that does memory allocation. Note that we included these Type B features not because

they are important for �ow-sensitivity. We included them to increase expressiveness, because our

linear learning model with Type A features only cannot express such usage pa�erns. Deciding

whether they are important for �ow-sensitivity or not is the job of the learning algorithm.

Our Feature Engineering Process. In this work, we manually designed the features as follows.

To identify a feature, we begin with a program that contains a query requiring �ow-sensitivity

to prove. Given a program P , we can easily collect such queries by running �ow-sensitive and

�ow-insensitive analyses on P and compare the proved queries by these analyses. Suppose we

identify the following program and a query from this procedure:

1 int* a = malloc(10);
2 int i = 0;
3 while (1) {
4 y = unknown();
5 z = unknown();
6 if (y < z)
7 ...;
8 if (i < 10)
9 a[i] = 0; // buffer-overrun query
10 i = i + 1;
11 }

Note that a �ow-sensitive analysis is able to prove the safety of bu�er-access at line 9 while a

�ow-insensitive analysis fails to do so. Once we identify such a target program and a query, we

remove all irrelevant statements from the program. For instance, variables y and z are irrelevant
to the query (no dependencies on the query), so we remove all lines with y and z and obtain the

following reduced program:

1 a = malloc(10);
2 i = 0;
3 while (1) {
4 if (i < 10)
5 a[i] = 0; // buffer-overrun query

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:20 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

6 i = i + 1;
7 }

�is code snippet now contains only the statements on which the query depends. From this code,

we extract syntactic and semantic properties of involved program variables. For instance, we know

that the variable i, which is used as the index of the array-access, is a local variable in this program,

generating the feature #1 in our list (Table 2). Also, we observe that i is compared with a constant

at line 4 and incremented by one, from which we generate the features #8 and #19, respectively.

Similarly, we can create the features #32 (modi�ed inside a local loop), #33 (read inside a local loop),

and #28 (used as an array index). We also generate the features for the variable a from the code:

#15 (directly returned from malloc) and #29 (used as an array expression).

�is way, we can create the positive features of program variables, which describe properties of

variables that help the analysis to prove queries. In a similar manner, we can also generate negative
features, which describe the properties of variables involved in unprovable queries. Our process

is manual, but the same principle (i.e., identifying positive/negative queries, generating minimal

programs, and extract features from them) can be applied to design the features for other program

analyses (e.g., Table 3 and 4).

6.2 Adaptive Context-Sensitive Analysis
Another example of our approach is adaptive context-sensitive analyses. Assume we are given a

program P . Let Procs be the set of procedures in P . �e adaptation strategy of such an analysis

selects a subset Pr of procedures of P , and instructs the analysis to treat only the ones in Pr context-
sensitively: calling contexts of each procedure in Pr are treated separately by the analysis. �is

style of implementing partial context-sensitivity is intuitive and well-studied, so we omit the details

and just mention that our implementation used one such analysis in [22] a�er minor modi�cation.

Note that these partially context-sensitive analyses are instances of the adaptive static analysis in

Section 3; the set Procs corresponds to JP , and Pr is what we call an abstraction in that section.

For partial context-sensitivity, we used 38 features in Table 3. Since our partially context-sensitive

analysis adapts by selecting a subset of procedures, our features are predicates over procedures,

i.e., πk : Procs → B. As in the �ow-sensitivity case, we used both atomic features (Type A)

and compound features (Type B), both describing properties of procedures, e.g., whether a given

procedure is a leaf in the call graph.

�e previous two analyses can be combined to an adaptive analysis that controls both �ow-

sensitivity and context-sensitivity. �e combined analysis adjusts the level of abstraction at abstract

locations and procedures. �is means that its JJ set consists of abstract locations and procedures,

and its abstractions are just subsets of these locations and procedures. �e features of the combined

analysis are obtained similarly by pu�ing together the features for our previous analyses. �is

combined abstractions and features enable our learning algorithm to �nd amore complex adaptation

strategy that considers both �ow-sensitivity and context-sensitivity at the same time. �is strategy

helps the analysis to use its increased �exibility e�ciently. In Section 7.2, we report our experience

with experimenting the combined analysis.

6.3 Adaptive Widening-with-Thresholds
�e last instance of our approach is an analysis that adaptively chooses widening thresholds. We

describe the technique of widening-with-thresholds, and present the features used in its adaptation

strategy. For clarity, we describe the technique in the context of the interval domain [5], but the

general idea behind the technique is applicable regardless of the underlying abstract domain.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:21

Type # Features

A 1 leaf function

2 function containing malloc

3 function containing realloc

4 function containing a loop

5 function containing an if statement

6 function containing a switch statement

7 function using a string-related library function

8 write to a global variable

9 read a global variable

10 write to a structure �eld

11 read from a structure �eld

12 directly return a constant expression

13 indirectly return a constant expression

14 directly return an allocated memory

15 indirectly return an allocated memory

16 directly return a reallocated memory

17 indirectly return a reallocated memory

18 return expression involves �eld access

19 return value depends on a structure �eld

20 return void

21 directly invoked with a constant

22 constant is passed to an argument

23 invoked with an unknown value

24 functions having no arguments

25 functions having one argument

26 functions having more than one argument

27 functions having an integer argument

28 functions having a pointer argument

29 functions having a structure as an argument

B 30 2 ∧ (21 ∨ 22) ∧ (14 ∨ 15)
31 2 ∧ (21 ∨ 22) ∧ ¬(14 ∨ 15)
32 2 ∧ 23 ∧ (14 ∨ 15)
33 2 ∧ 23 ∧ ¬(14 ∨ 15)
34 2 ∧ (21 ∨ 22) ∧ (16 ∨ 17)
35 2 ∧ (21 ∨ 22) ∧ ¬(16 ∨ 17)
36 2 ∧ 23 ∧ (16 ∨ 17)
37 2 ∧ 23 ∧ ¬(16 ∨ 17)
38 (21 ∨ 22) ∧ ¬23

Table 3. Features for partially context-sensitive analysis.

Widening in Static Analysis. We begin with a short introduction to widening in static analysis. In

abstract interpretation, a static analysis is speci�ed by a pair of abstract domain D and abstract

semantic function F : D→ D. �e goal of the analysis is to compute an upper bound A of the least

�xed point of F , i.e.,

A w
⊔
i≥0

F i (⊥)

When the height of the domain D is �nite, the least �xed point computation eventually stabilizes.

However, when D has an in�nite height, the algorithm may not terminate, and a widening operator

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:22 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

Type # Features

A 1 used in array declarations (e.g., a[c])

2 used in memory allocation (e.g., malloc(c))

3 used in the righthand-side of an assignment (e.g., x = c)

4 used with the less-than operator (e.g, x < c)

5 used with the greater-than operator (e.g., x > c)

6 used with ≤ (e.g., x ≤ c)

7 used with ≥ (e.g., x ≥ c)

8 used with the equality operator (e.g., x == c)

9 used with the not-equality operator (e.g., x ! = c)

10 used within other conditional expressions (e.g., x < c+y)

11 used inside loops

12 used in return statements (e.g., return c)

13 constant zero

B 14 (1 ∨ 2) ∧ 3

15 (1 ∨ 2) ∧ (4 ∨ 5 ∨ 6 ∨ 7)
16 (1 ∨ 2) ∧ (8 ∨ 9)
17 (1 ∨ 2) ∧ 11

18 (1 ∨ 2) ∧ 12

19 13 ∧ 3

20 13 ∧ (4 ∨ 5 ∨ 6 ∨ 7)
21 13 ∧ (8 ∨ 9)
22 13 ∧ 11

23 13 ∧ 12

Table 4. Features for widening-with-thresholds.

should be used to complete the analysis in �nite steps. A widening operator

`
: D × D→ D is a

binary operator that has the two properties:

(1) It is an upper bound operator, i.e., ∀a,b ∈ D. (a v a
`
b) ∧ (b v a

`
b).

(2) For all increasing chain x0 v x1 v x2 v . . . in D, the chain y0 = x0,yi+1 = yi
`
xi+1 is

eventually stabilizes a�er �nite steps.

With a widening operator

`
, the upper bound A is computed by A = limi≥0Xi , where chain Xi is

de�ned as follows:

X0 = ⊥

Xi+1 = Xi F (Xi) v Xi
= Xi

`
F (Xi) otherwise

�e abstract interpretation framework guarantees that the above chain is always �nite and its limit

(i.e., limi≥0Xi) is an upper bound of the least �xed point of F [5]. For instance, a simple widening

operator for the interval domain works as follows: (For brevity, we do not consider the bo�om

interval.)

[a,b]
`

[c,d] = [(c < a? −∞ : a), (b < d? +∞ : b)]

�at is, the widening operator extrapolates any unstable bounds simply to in�nity. For instance,

[1, 4]
`
[1, 7] = [1,+∞].

Widening with �resholds. �e idea of widening-with-thresholds is to bound the extrapolation

of the widening using a pre-de�ned set of thresholds. For instance, suppose we are given a set

T = {8, 9} of thresholds. �en, applying widening [1, 4]
`T

[1, 7] with thresholds T = {8, 9} gives
interval [1, 8], instead of [1,+∞]. Here, threshold 8 is used because it is the smallest value in T ,

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:23

which is greater than 7. If the result is still unstable in the subsequent iteration, the next smallest

value in T , i.e., 9, is used to bound the widening.

Formally, the widening-with-thresholds technique for the interval domain is de�ned as follows.

We assume that a set T ⊆ Z ∪ {−∞,+∞} of thresholds is given. Without loss of generality, let us

assume that T = {t1, t2, . . . , tn }, t1 < t2 < · · · < tn , t1 = −∞, and tn = +∞. �e widening operator

parameterized by T is de�ned as follows:

[a,b]
`T

[c,d] = ([a,b]
`
[c,d]) u

d
{[tl , tu] | tl , tu ∈ T ∧ tl ≤ min(a, c) ∧ tu ≥ max(b,d)}

For instance, when T = {−∞, 0, 5,+∞},

[2, 3]
`T

[1, 4] = [−∞,+∞] u
d
{[0, 5], [−∞,+∞]} = [−∞,+∞] u [0, 5] = [0, 5].

Note that the precision and scalability of the technique is entirely controlled by the choice of T .
For instance, when T = ∅, the analysis degenerates into the analysis with the standard widening,

which is very hasty in extrapolating unstable bounds to in�nities. On the other hand, when L = U
(assume that U is the universal set for thresholds such as the set of all integer constants in the

given program), the analysis becomes the most precise one, where the analysis a�empts to bound

the widening with every integer constant in the program. �e set T is what we call abstraction

in Section 3; the set of integers in U forms JP in that section, and subsets of these integers are

abstractions there. Our goal is to choose a good set T ⊆ U of thresholds, which makes the analysis

comparable to the analysis with T = U for precision and to the analysis with T = ∅ for scalability.
In particular, we aim to learn such a T from an existing codebase.

Features. �e features for the widening-with-thresholds technique describe properties of integer

constants in the program; a feature is a predicate over integers, i.e., πk : Z→ B. In our implemen-

tation, we used 23 syntactic features shown in Table 4, which describe how integer constants are

used in typical C programs, e.g., whether the constant is used as an argument of memory allocation

functions.

7 EXPERIMENTS
Following our recipe in Section 6, we instantiated our approach for partial �ow-sensitivity, partial

context-sensitivity, and partial widening-with-thresholds. We implemented these instantiations in

Sparrow, an interval domain–based static analyzer for real-world C programs [24]. In this section,

we report the results of our experiments with these implementations.

• Section 7.1 applies our learning method to �ow-sensitive analysis and evaluates its perfor-

mance with two clients, bu�er-over�ow and null-dereference detection.

• Section 7.2 evaluates our approach for context-sensitivity.

• Section 7.3 evaluates our approach for widening-with-thresholds, i.e., for choosing threshold

values for widening of the interval analysis.

• Section 7.4 shows the e�ectiveness of the ordinal optimization idea proposed in Section 5.4.

• Section 7.5 compares our algorithm with Bayesian optimization to other discrete optimiza-

tion algorithms.

7.1 Partial Flow-Sensitivity
Se�ing. We implemented a partial �ow-sensitive analysis in Section 6.1 by modifying Sparrow,

which supports the full C language and has been being developed for the past seven years [24].

�is baseline analyzer tracks both numeric and pointer-related information simultaneously in its

�xpoint computation. For numeric values, it uses the interval abstract domain, and for pointer

values, it uses an allocation-site-based heap abstraction. �e analysis is �eld-sensitive (i.e., separates

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:24 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

Training

FI FS partial FS

Trial prove prove prove quality

1 6,383 7,316 7,089 75.7 %

2 5,788 7,422 7,219 87.6 %

3 6,148 7,842 7,595 85.4 %

4 6,138 7,895 7,599 83.2 %

5 7,343 9,150 8,868 84.4 %

TOTAL 31,800 39,625 38,370 84.0 %

Testing

FI FS partial FS

prove sec prove sec cost prove sec quality cost

1 2,788 48 4,009 627 13.2 x 3,692 78 74.0 % 1.6 x

2 3,383 55 3,903 531 9.6 x 3,721 93 65.0 % 1.7 x

3 3,023 49 3,483 1,898 38.6 x 3,303 99 60.9 % 2.0 x

4 3,033 38 3,430 237 6.2 x 3,286 51 63.7 % 1.3 x

5 1,828 28 2,175 577 20.5 x 2,103 54 79.3 % 1.9 x

TOTAL 14,055 218 17,000 3,868 17.8 x 16,105 374 69.6 % 1.7 x
Table 5. E�ectiveness of our method for flow-sensitivity. prove: the number of proved queries in each analysis
(FI: flow-insensitivity, FS: flow-sensitivity, partial FS: partial flow-sensitivity). quality: the ratio of proved
queries among the queries that require flow-sensitivity. cost: cost increase compared to the FI analysis.
(bu�er-overrun client)

Training

FI FS partial FS

Trial prove prove prove quality

1 8,956 10,080 9,847 79.3 %

2 8,470 9,366 9,289 91.4 %

3 8,267 9,394 9,198 82.6 %

4 8,174 9,194 9,078 88.6 %

5 8,925 10,142 9,999 88.2 %

TOTAL 42,792 48,176 47,411 85.8 %

Testing

FI FS partial FS

prove sec prove sec cost prove sec quality cost

1 2,026 33 2,409 270 8.2 x 2,390 87 95.0 % 2.6 x

2 2,512 34 3,123 291 8.5 x 2,918 86 66.4 % 2.5 x

3 2,715 18 3,095 1,233 70.5 x 3,052 80 88.7 % 4.6 x

4 2,808 35 3,295 109 3.1 x 3,124 63 64.9 % 1.8 x

5 2,057 12 2,347 270 22.9 x 2,257 53 69.0 % 4.5 x

TOTAL 12,118 131 14,269 2,172 16.6 x 13,741 368 75.5 % 2.8 x
Table 6. E�ectiveness for Flow-Sensitivity with the Null-Dereference Client.

di�erent structure �elds) and �ow-sensitive, but it is not context-sensitive. We applied the sparse

analysis technique [23] to improve the scalability.

By modifying the baseline analyzer, we implemented a partially �ow-sensitive analysis, which

controls its �ow-sensitivity according to a given set of abstract locations (program variables,

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:25

(a) Random sampling (b) Bayesian optimisation

Fig. 2. Comparison of Bayesian optimisation with random sampling

structure �elds and allocation sites) as described in Section 6.1. We also implemented our learning

algorithm based on Bayesian optimization. Our implementations were tested against 30 open

source programs from GNU and Linux packages (Table 7).

�e key questions that we would like to answer in our experiments are whether our learning

algorithm produces a good adaptation strategy and how much it gets bene�ted from Bayesian

optimization. To answer the �rst question, we followed a standard method in the machine learning

literature, called cross validation. We randomly divide the 30 benchmark programs into 20 training

programs and 10 test programs. An adaptation strategy is learned from the 20 training programs,

and tested against the remaining 10 test programs. We repeated this experiment for �ve times.

�e results of each trial are shown in Table 5. In these experiments, we set k = 0.1, which means

that �ow-sensitivity is applied to only the 10% of total abstract locations (i.e., program variables,

structure �elds and allocation sites). We compared the performance of a �ow-insensitive analysis

(FI), a fully �ow-sensitive analysis (FS) and our partially �ow-sensitive variant (partial FS). To

answer the second question, we compared the performance of the Bayesian optimization-based

learning algorithm against the random sampling method.

Learning. Table 5 shows the results of the training and test phases for all the �ve trials. In

total, the �ow-insensitive analysis (FI) proved 31,800 bu�er-overrun queries in the 20 training

programs, while the fully �ow-sensitive analysis (FS) proved 39,625 queries. During the learning

phase, our algorithm found a parameter w. On the training programs, the analysis with w proved,

on average, 84.0% of FS-only queries, that is, queries that were handled only by the �ow-sensitive

analysis (FS). Finding such a good parameter for training programs, let alone unseen test ones, is

highly nontrivial. As shown in Table 2, the number of parameters to tune at the same time is 45

for �ow-sensitivity. Manually searching for a good parameter w for these 45 parameter over 18

training programs is simply impossible. In fact, we tried to do this manual search in the early stage

of this work, but most of our manual trials failed to �nd any useful parameter (Figure 2).

Figure 2 compares our learning algorithm based on Bayesian optimisation against the one based

on random sampling. It shows the two distributions of the qualities of tried parametersw (recorded

in the x axis), where the �rst distribution uses parameters tried by random sampling over a �xed

time budget (12h) and the second, by Bayesian optimisation over the same budget. By the quality

of w, we mean the percentage of FS-only queries proved by the analysis with w. �e results for

random sampling (Figure 2(a)) con�rm that the space for adaptation parameters w for partial

�ow-sensitivity is nontrivial; most of the parameters do not prove any queries. As a result, random

sampling wastes most of its execution time by running the static analysis that does not prove any

FS-only queries. �is shortcoming is absent in Figure 2(b) for Bayesian optimisation. In fact, most

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:26 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

Programs LOC

cd-discid-1.1 421

time-1.7 1,759

unhtml-2.3.9 2,057

spell-1.0 2,284

mp3rename-0.6 2,466

ncompress-4.2.4 2,840

pgdbf-0.5.0 3,135

cam-1.05 5,459

e2ps-4.34 6,222

sbm-0.0.4 6,502

mpegdemux-0.1.3 7,783

barcode-0.96 7,901

bzip2 9,796

bc-1.06 16,528

gzip-1.2.4a 18,364

unrtf-0.19.3 19,015

archimedes 19,552

coan-4.2.2 28,280

gnuchess-5.05 28,853

tar-1.13 30,154

tmndec-3.2.0 31,890

agedu-8642 32,637

gbsplay-0.0.91 34,002

�ake-0.11 35,951

enscript-1.6.5 38,787

mp3c-0.29 52,620

tree-puzzle-5.2 62,302

icecast-server-1.3.12 68,564

aalib-1.4p5 73,412

rnv-1.7.10 93,858

TOTAL 743,394

Table 7. Benchmark programs.

parameters found by Bayesian optimisation led to adaptation strategies that prove about 70% of

FS-only queries. Figure 3 shows how the best qualities found by Bayesian optimisation and random

sampling change as the learning proceeds. �e results compare the �rst 30 evaluations for the �rst

training set of our experiments, which show that Bayesian optimisation �nds a be�er parameter

(63.5%) with fewer evaluations. �e random sampling method converged to the quality of 45.2%.

Testing. For each of the �ve trials, we tested a parameter learnt from 20 training programs,

against 10 programs in the test set. �e results of this test phase are given in Table 5, and they show

that the analysis with the learnt parameters has a good precision/cost balance. In total, for 10 test

programs, the �ow-insensitive analysis (FI) proved 14,055 queries, while the full �ow-sensitive one

(FS) proved 17,000 queries. �e partially �ow-sensitive version with a learnt adaptation strategy

proved on average 69.6% of the FS-only queries. To do so, our partially �ow-sensitive analysis

increases the cost of the FI analysis only moderately (by 1.7x), while the FS analysis increases the

analysis cost by 17.8x.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:27

Fig. 3. Comparison of Bayesian optimisation with random sampling

Trials

rank 1 2 3 4 5 6 7 8 9 10

1 # 19 # 19 # 19 # 19 # 19 # 11 # 11 # 11 # 13 # 19

2 # 32 # 32 # 32 # 32 # 32 # 19 # 19 # 19 # 19 # 28

3 # 1 # 28 # 37 # 1 # 1 # 28 # 24 # 28 # 28 # 32

4 # 4 # 33 # 40 # 27 # 4 # 12 # 26 # 12 # 32 # 7

5 # 28 # 29 # 31 # 4 # 28 # 1 # 28 # 1 # 26 # 3

6 # 33 # 18 # 1 # 28 # 7 # 32 # 32 # 4 # 7 # 33

7 # 29 # 8 # 39 # 7 # 15 # 26 # 18 # 42 # 45 # 24

8 # 3 # 14 # 27 # 9 # 33 # 21 # 43 # 23 # 3 # 20

9 # 43 # 37 # 20 # 6 # 29 # 7 # 36 # 32 # 33 # 40

10 # 18 # 9 # 4 # 15 # 3 # 45 # 7 # 6 # 35 # 8

Fig. 4. (Le�) Top-10 features (for flow-sensitivity) identified by our learning algorithm for ten trials. Each
entry denotes the feature numbers shown in Table 2. (Right) Counts of each feature (x-axis) that appears in
the top-10 features during the ten trials. Features #19 and #32 are in top-10 for all trials. The results have
been obtained with 20 training programs.

However, the results show that the analyses with the learnt parameters are generally less precise

in the test set than the training set. For the �ve trials, our method has proved, on average, 84.0% of

FS-queries in the training set and 69.6% in the test set.

Top-10 Features. �e learnt parameter identi�ed the features that are important for �ow-sensitivity.

Because our learning method computes the score of abstract locations based on linear combination

of features and parameter w, the learnt parameter w means the relative importance of features.

Figure 4 shows the 10 most important features identi�ed by our learning algorithm from ten

trials (including the �ve trials in Table 5 as well as additional �ve ones). For instance, in the

�rst trial, we found that the most important features were #19, 32, 1, 4, 28, 33, 29, 3, 43, 18 in

Table 2. �ese features say that accurately analysing, for instance, variables incremented by one

(#19) or modi�ed inside a local loop (#32), and local variables (#1) are important for cost-e�ective

�ow-sensitive analysis. �e histogram on the right shows the number of times each feature appears

in the top-10 features during the ten trials. In all trials, features #19 (variables incremented by one)

and #32 (variables modi�ed inside a local loop) are included in the top-10 features. Features #1

(local variables), #4 (locations created by dynamic memory allocation), #7 (location generated in

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:28 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

Fig. 5. Top-10 feature frequencies with 20 training programs.

library code), and #28 (used as an array index) appear more than �ve times across the ten trials.

We also identi�ed top-10 features when trained with a smaller set of programs. Figure 6 shows the

results with 10 training programs. In this case, features #1 (local variables), #7 (assigned a constant

expression), #9 (compared with another variable), #19 (incremented by one), #28 (used as an array

index), and #32 (modi�ed inside a local loop) appeared more than �ve times across ten trials.

�e automatically selected features generally coincided with our intuition on when and where

�ow-sensitivity helps. For instance, the following code (taken from barcode-0.96) shows a typical

situation where �ow-sensitivity is required:

int mirror[7];
int i = unknown;
for (i=1;i<7;i++)

if (mirror[i-1] == '1') ...

Because variable i is initially unknown and is incremented in the loop, a �ow-insensitive interval

analysis cannot prove the safety of bu�er access at line 3. On the other hand, if we analyze variable

i �ow-sensitively, we can prove that i-1 at line 3 always has a value less than 7 (the size of mirror).
Note that, according to the top-10 features, variable i has a high score in our method because it is

a local variable (#1), modi�ed inside a local loop (#32), and incremented by one (# 19).

�e selected features also provided novel insights that contradicted our conjecture. When we

manually identi�ed important features in the early stage of this work, we conjectured that feature

#10 (variables negated in a conditional expression) would be a good indicator for �ow-sensitivity,

because we found the following pa�ern in the program under investigation (spell-1.0):

int pos = unknown;
if (!pos)

path[pos] = 0;

Although pos is unknown at line 1, its value at line 3 must be 0 because pos is negated in the

condition at line 2. However, a�er running our algorithm over the entire codebase, we found that

this pa�ern happens only rarely in practice, and that feature #10 is actually a strong indicator for

�ow-“insensitivity”.

E�ectiveness of the type-B features. We evaluated the e�ectiveness of our method without the

type-B features. In our experience, the type-B features is less important than the type-A features.

Without the type-B features, however, the results are highly unstable depending on training and

test sets. Our partially �ow-sensitive analysis without type-B features yields similar performance

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:29

Fig. 6. Top-10 feature frequencies with 10 training programs.

on average: 67.7% of the FS-only queries. However, the individual results vary a lot: it proved 84.9%

in the trial 1, yet only 46.8% in the trial 5.

Robustness of the features. We evaluated the robustness of our features under semantic-preserving

transformations. We transformed the benchmark programs with 1) common compiler optimizations

(partial evaluation, constant folding and dead code elimination) and 2) three-address code using

the CIL frontend [20].

According to the experiments, semantic-preserving transformations do not sacri�ce the per-

formance much. First, the simple compiler optimizations made only marginal di�erence. It is

because our analysis and analysis are not that sensitive to di�erent syntactic representations of

constants and dead codes. Meanwhile, the three-address code degrades the quality to 58.8%. �is

transformation results in lower-level C codes that are harder to analyze in general. For example, in

the three-address code, �eld accesses are transformed to byte o�sets that our analyzer does not

handle precisely.

Sensitivity to the benchmarks. We evaluated the sensitivity of our method to the characteristics

of the benchmark programs. We tried di�erent cross-validation by collecting test sets according to

their characteristics. Among the 30 benchmark programs, we derived two test sets: text-processing

programs and mathematical programs (compression, scienti�c computation, and game).

�e proposed learning method is not that sensitive to training/test sets. �e partially �ow-

sensitive analysis proved 93.8% of the FS-only queries in the text-processing programs and 70.4%

in the mathematical programs; both of them are higher than the average quality of the randomly

selected test sets.

Comparison to a Simple Random Search. We tried an exhaustive random search on only a few

programs and evaluated the found weight vector. We performed random search on two small

programs (time-1.7 and unhtml-2.3.9) for 12 hours. However, the random search could not �nd a

generally good weight. �e best wight vector during the random search is not e�ective to apply to

unseen programs. In the experiments, the derived partially �ow-sensitive analysis only proved

42.5% of the FS-only queries.

Performance with a Null-Dereference Client. We also evaluated the e�ectiveness of our method

with null-dereference checking. A null-dereference query is of the form assert(p != NULL),
checking if pointer p could have the null value. Table 6 shows the results of the training and

test phases for �ve trials for null-dereference queries. In these experiments, we used the same

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:30 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

Training

FI FS partial FS

Trial prove prove prove quality

1 6,383 9,237 8,674 80.3 %

2 5,788 8,287 7,598 72.4 %

3 6,148 8,737 8,123 76.3 %

4 6,138 9,883 8,899 73.7 %

5 7,343 10,082 10,040 98.5 %

TOTAL 31,800 46,226 43,334 80.0 %

Testing

FI FS partial FS

prove sec prove sec cost prove sec quality cost

1 2,788 46 4,275 5,425 118.2 x 3,907 187 75.3 % 4.1 x

2 3,383 57 5,225 4,495 79.4 x 4,597 194 65.9 % 3.4 x

3 3,023 48 4,775 5,235 108.8 x 4,419 150 79.7 % 3.1 x

4 3,033 38 3,629 1,609 42.0 x 3,482 82 75.3 % 2.1 x

5 1,828 30 2,670 7,801 258.3 x 2,513 104 81.4 % 3.4 x

TOTAL 14,055 219 20,574 24,565 112.1 x 18,918 717 74.6 % 3.3 x
Table 8. E�ectiveness for Flow-sensitivity + Context-sensitivity (bu�er-overrun client).

features that were used for bu�er-overrun queries. In total, the �ow-insensitive analysis (FI) proved

42,792 null-dereference queries and the �ow-sensitive analysis (FS) proved 48,176 queries during

the training phase (with 20 programs), proving 85.8% of FS-only queries. In the test phase, the

�ow-insensitive analysis proved 12,118 queries, while the full �ow-sensitive analysis proved 14,269

queries. Our partially �ow-sensitive analysis with the parameter found in the training phase proved

13,741 queries, proving 75.5% of the FS-only queries. �ese results show that our learning approach

e�ectively generalizes to other client analyses as well.

Comparison with the Impact Pre-analysis Approach. Recently [22] proposed to run a cheap pre-

analysis, called impact pre-analysis, and to use its results for deciding which parts of a given

program should be analysed precisely by the main analysis [22]. We compared our approach with

Oh et al.’s proposal on partial �ow sensitivity. Following Oh et al.’s recipe [22], we implemented

a impact pre-analysis that is fully �ow-sensitive but uses a cheap abstract domain, in fact, the

same one as in [22], which mainly tracks whether integer variables store non-negative values or

not. �en, we built an analysis that uses the results of this pre-analysis for achieving partially

�ow-sensitivity.

In our experiments with the programs in Table 5, the analysis based on the impact pre-analysis

proved 80% of queries that require �ow-sensitivity, and spent 5.5x more time than �ow-insensitive

analysis. Our new analysis of this paper, on the other hand, proved 70% and spent only 1.7x more

time. Furthermore, in our approach, we can easily obtain the analysis that is selective both in �ow-

and context-sensitivity (Section 7.2), which is is nontrivial in the pre-analysis approach.

7.2 Adding Partial Context-Sensitivity
As another instance of our approach, we implemented an adaptive analysis for supporting both

partial �ow-sensitivity and partial context-sensitivity. Our implementation is an extension of the

partially �ow-sensitive analysis, and follows the recipe in Section 6.2. Its learning part �nds a good

parameter of a strategy that adapts �ow-sensitivity and context-sensitivity simultaneously. �is

involves 83 parameters in total (45 for �ow-sensitivity and 38 for context-sensitivity), and is a more

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:31

Training

without thresholds full thresholds partial thresholds

Trial prove prove prove quality

1 7,403 7,455 7,445 80.8 %

2 7,444 7,516 7,510 91.7 %

3 7,971 8,045 8,042 95.9 %

4 7,934 8,026 8,013 85.9 %

5 9,191 9,460 9,455 98.1 %

TOTAL 39,943 40,502 40,465 93.4 %

Testing

without thresholds full thresholds partial thresholds

prove sec prove sec cost prove sec quality cost

1 4,050 424 4,288 3,856 9.1 x 4,271 613 92.9 % 1.4 x

2 4,009 351 4,227 2,247 6.4 x 4,221 443 97.2 % 1.3 x

3 3,482 938 3,698 12,062 12.9 x 3,695 1493 98.6 % 1.6 x

4 3,519 201 3,717 1,817 9.0 x 3,713 311 98.0 % 1.5 x

5 2,262 358 2,283 1,679 4.7 x 2,279 483 81.0 % 1.3 x

TOTAL 17,322 2273 18,213 21,661 9.5 x 18,179 3343 96.2 % 1.5 x
Table 9. E�ectiveness for Widening-with-Thresholds with the bu�er-overrun client.

di�cult problem (as an optimisation problem as well as as a generalisation problem) than the one

for partial �ow-sensitivity only.

Se�ing. We implemented context-sensitivity by inlining. All the procedures selected by our

adaptation strategy get inlined. In order to avoid code explosion by such inlining, we inlined only

relatively small procedures. Speci�cally, in order to be inlined in our experiments, a procedure

should have less-than-100 basic blocks. �e results of our experiments are shown in Table 8.

In the table, FSCS means the fully �ow-sensitive and fully context-sensitive analysis, where all

procedures with less-than-100 basic blocks are inlined. FICI denotes the fully �ow-insensitive and

context-insensitive analysis. Our analysis (partial FSCS) represents the analysis that selectively

applies both �ow-sensitivity and context-sensitivity.

Results. �e results show that our learning algorithm �nds a good parameter w of our adaption

strategy. �e learnt w generalises well to unseen programs, and leads to an adaptation strategy

that achieves high precision with reasonable additional cost. In training programs, FICI proved

26,904 queries, and FSCS proved 39,555 queries. With a learnt parameter w on training programs,

our partial FSCS proved 79.3% of queries that require �ow-sensitivity or context-sensitivity or both.

More importantly, the parameter w worked well for test programs, and proved 81.2% of queries of

similar kind. Regarding the cost, our partial FSCS analysis increased the cost of the FICI analysis

only by 3.0x, while the fully �ow- and context-sensitive analysis (FSCS) increased it by 80.5x.

7.3 Adaptive Widening-with-Thresholds
�e last instance is an interval analysis that adaptively chooses threshold values for widening

(Section 6.3). Among all constant integers in the program, we choose 10% of them with highest

scores. Table 9 shows that our learning algorithm �nds a very good parameter for choosing

widening thresholds both in training and test phases. In the training phase, the interval analysis

with no thresholds proved 39,943 (bu�er-overrun) queries, whereas the analysis with the entire

threshold set (i.e. the set of all constant integers in program texts) proved 40,502 queries. Our

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:32 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

Fig. 7. �ality of the learning algorithm with di�erent r values

partial analysis proved 40,465 queries (93.4%). In the test phase, the analysis without thresholds

proved 17,322 queries. With full threshold set, the analysis can prove 18,213 queries, but it increases

the analysis cost by 9.5x. Our selective technique proved 96.2% of queries that require thresholds

while only increasing the cost by 1.5x.

7.4 Performance of Ordinal Optimization
In Section 5.4, we incorporated ordinal optimization into our learning algorithm, where the degree

of approximation is controlled by the parameter r . �e parameter r is a real number ranging from

0 to 1. If r is 1, the cost of estimating performance is the same as that of measuring the exact

performance value by analyzing all the program components in an abstraction with high precision.

If r is 0, the cost of estimating performance is identical to that of evaluating the exact performance

value by not analyzing any component in the abstraction with high precision, o�en resulting in

poor quality. �erefore, we need to choose the proper value for r . We want r to be as small as

possible so that we can lower the overall cost of learning, while maintaining the quality of analysis

(i.e. precision of analysis) as high as possible.

Figure 7 shows the quality of the learning algorithm with ordinal optimization as r increases.
For each r , we ran our learning algorithm on a set of 20 programs and obtained the quality of the

best parameter found. We performed these experiments 10 times and averaged the results. Note

that the quality drops by only 2 percent (from 76% to 74%) even when r is reduced to half of its

original value (from 1 to 0.5). �is experiment provides empirical evidence of the reliability of

ordinal optimization in learning adaptation strategies of static analysis.

7.5 Comparison to Other Optimization Algorithms
We compared Bayesian optimization with two popular optimization algorithms: Basin-hopping [38]

and Di�erential evolution [37]. Basin-hopping performs a stochastic search akin to simulated

annealing and Di�erential evolution is an evolutionary algorithm.

In our case, these algorithms were extremely ine�ective: with the same training time as Bayesian

optimization, Basin-hopping proved only 1.4% of the FS-only queries in the learning phase and 2.3%

in the testing phase. �e Di�erential evolution could not �nd parameters be�er than initial random

ones. �e main reason is that these algorithms basically require evaluating the objective function

many times (e.g., the evolutionary algorithm needs a large set of populations to work), which is

infeasible in our case. On the other hand, the main strength of Bayesian optimization is that it is

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:33

well-suited for expensive objective functions. �is is why we chosen Bayesian optimization for

learning program analysis parameters.

8 RELATEDWORK AND DISCUSSION
Parametric Program Analysis. Parametric program analyses refer to a program analysis that

is equipped with a class of program abstractions and analyzes a given program by selecting

abstractions from this class appropriately. �e original idea of parametric program analysis was

proposed in [15], where the goal is to learn a minimal abstraction that is a coarsest abstraction

capable of proving all provable queries. [15] showed that such a minimal abstraction is signi�cantly

small. Our work exploits this fact and provides a learning approach for �nding a good abstraction.

Parametric analyses commonly adopt counter-example-guided abstraction re�nement, and selects

a program abstraction based on the feedback from a failed analysis run [1, 4, 7, 8, 10, 11, 39, 40].

Some exceptions to this common trend are to use the results of dynamic analysis [9, 19] or pre-

analysis [22, 35] for �nding a good program abstraction.

However, automatically �nding such a strategy is not what they are concerned with, while it is

the main goal of our work. All of the previous approaches focus on designing a good �xed strategy

that chooses a right abstraction for a given program and a given query. A high-level idea of our

work is to parameterize these adaptation (or abstraction-selection) strategies, not just program

abstractions, and to use an e�cient learning algorithm (such as Bayesian optimization) to �nd right

parameters for the strategies. One interesting research direction is to try our idea with existing

parametric program analyses.

For instance, our method can be combined with the impact pre-analysis [22] to �nd a be�er

strategy for selective context-sensitivity. In [22], context-sensitivity is selectively applied by

receiving a guidance from a pre-analysis. �e pre-analysis is an approximation of the main analysis

under full context-sensitivity. �erefore it estimates the impact of context-sensitivity on the main

analysis, identifying context-sensitivity that is likely to bene�t the �nal analysis precision. One

feature of this approach is that the impact estimation of the pre-analysis is guaranteed to be realized

at the main analysis (Proposition 1 in [22]). However, this impact realization does not guarantee

the proof of queries; some context-sensitivity is inevitably applied even when the queries are

not provable. Also, because the pre-analysis is approximated, the method may not apply context-

sensitivity necessary to prove some queries. Our method can be used to reduce these cases; we can

�nd a be�er strategy for selective context-sensitivity by using the pre-analysis result as a semantic

feature together with other (syntactic/semantic) features for context-sensitivity.

Use of Machine Learning in Program Analysis. Several machine learning techniques have been

used for various problems in program analysis. Researchers noticed that many machine learning

techniques share the same goal as program abstraction techniques, namely, to generalise from

concrete cases, and they tried these machine learning techniques to obtain sophisticated candidate

invariants or speci�cations from concrete test examples [21, 29, 30, 32–34]. Another application of

machine learning techniques is to encode so� constraints about program speci�cations in terms of

a probabilistic model, and to infer a highly likely speci�cation of a given program by performing a

probabilistic inference on the model [2, 14, 16, 27]. In particular, Raychev et al.’s JSNice [27] uses a

probabilistic model for describing type constraints and naming convention of JavaScript programs,

which guides their cleaning process of messy JavaScript programs and is learnt from an existing

codebase. Finally, machine learning techniques have also been used to mine correct API usage from

a large codebase and to synthesize code snippets using such APIs automatically [17, 28].

Our aim is di�erent from those of the above works. We aim to improve a program analysis

using machine learning techniques, but our objective is not to �nd sophisticated invariants or

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:34 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

speci�cations of a given program using these techniques. Rather it is to �nd a strategy for searching

for such invariants. Notice that once this strategy is learnt automatically from an existing codebase,

it is applied to multiple di�erent programs. In the invariant-generation application, on the other

hand, learning happens whenever a program is analyzed. Our work identi�es a new challenging

optimization problem related to learning such a strategy, and shows the bene�ts of Bayesian

optimization for solving this problem.

Application of Bayesian Optimization. To the best of our knowledge, our work is the �rst appli-

cation of Bayesian optimization to static program analysis. Bayesian optimization is a powerful

optimization technique that has been successfully applied to solve a wide range of problems such

as automatic algorithm con�guration [13], hyperparameter optimization of machine learning algo-

rithms [36], planning, sensor placement, and intelligent user interface [3]. In this work, we use

Bayesian optimization to �nd optimal parameters for adapting program analysis.

In our context, we believe Bayesian optimization is more powerful than other approaches such

MCMC sampling used in, e.g., [31], which relatively requires more evaluations of the (expensive)

objective function. In this paper, we showed that using Bayesian optimization outperforms other

discrete optimization algorithms for our program-analysis application.

Abstraction Re�nement. Applying the standard abstraction re�nement to our problem is chal-

lenging and requires to solve yet another research problem. Most of the previous re�nement-based

work are for pointer analyses (e.g., [39]). It is not straightforward to generalize their work to the

program analyses considered in this work (e.g., �ow-sensitive and/or context-sensitive interval

analysis, widening with threshold).

9 CONCLUSION
In this paper, we presented a novel approach for automatically learning a good strategy that adapts

a static analysis to a given program. �is strategy is learnt from an existing codebase e�ciently

via Bayesian optimisation, and it decides, for each program, which parts of the program should

be treated with precise yet costly program-analysis techniques. �is decision helps the analysis

to strike a balance between cost and precision. Following our approach, we have implemented

two variants of our bu�er-overrun analyzer, that adapt the degree of �ow-sensitivity and context-

sensitivity of the analysis. Our experiments con�rm the bene�ts of Bayesian optimisation for

learning adaptation strategies. �ey also show that the strategies learnt by our approach are highly

e�ective: the cost of our variant analyses is comparable to that of �ow- and context-insensitive
analyses, while their precision is close to that of fully �ow- and context-sensitive analyses.
As we already mentioned, our learning algorithm is nothing but a method for generalizing

information from given programs to unseen ones. We believe that this cross-program generalization

has a great potential for addressing open challenges in program analysis research, especially because

the amount of publicly available source code (such as that in GitHub) has substantially increased.

We hope that our results in this paper give one evidence of this potential and get program-analysis

researchers interested in this promising research direction.

ACKNOWLEDGMENTS
�isworkwas supported by Samsung Research Funding& Incubation Center of Samsung Electronics

under Project Number SRFC-IT1701-09. �is work was also supported by Institute for Information

& communications Technology Promotion(IITP) grant funded by the Korea government(MSIT)

(No.2017-0-00184, Self-Learning Cyber Immune Technology Development). �is work was partly

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Adaptive Static Analysis via Learning with Bayesian Optimization 1:35

supported by Institute for Information & communications Technology Promotion(IITP) grant

funded by the Korea government(MSIT) (No. B0717-16-0098).

REFERENCES
[1] Ball, T. and Rajamani, S. 2002. �e SLAM project: Debugging system so�ware via static analysis. In POPL.
[2] Beckman, N. E. and Nori, A. V. 2011. Probabilistic, modular and scalable inference of typestate speci�cations. In PLDI.
211–221.

[3] Brochu, E., Cora, V. M., and de Freitas, N. 2010. A tutorial on bayesian optimization of expensive cost functions,

with application to active user modeling and hierarchical reinforcement learning. CoRR abs/1012.2599.
[4] Chaki, S., Clarke, E., Groce, A., Jha, S., and Veith, H. 2003. Modular veri�cation of so�ware components in C. In

ICSE.
[5] Cousot, P. and Cousot, R. 1977. Abstract interpretation: A uni�ed la�ice model for static analysis of programs by

construction or approximation of �xpoints. In Proceedings of �e ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 238–252.

[6] Dai, L. 1996. Convergence properties of ordinal comparison in the simulation of discrete event dynamic systems.

Journal of Optimization �eory and Applications 91, 2, 363–388.
[7] Grebenshchikov, S., Gupta, A., Lopes, N., Popeea, C., and Rybalchenko, A. 2012. HSF(C): A so�ware veri�er based

on Horn clauses. In TACAS.
[8] Gulavani, B., Chakraborty, S., Nori, A., and Rajamani, S. 2008. Automatically re�ning abstract interpretations. In

TACAS.
[9] Gupta, A., Majumdar, R., and Rybalchenko, A. 2013. From tests to proofs. STTT 15, 4, 291–303.
[10] Henzinger, T., Jhala, R., Majumdar, R., and McMillan, K. 2004. Abstractions from proofs. In POPL.
[11] Henzinger, T., Jhala, R., Majumdar, R., and Sutre, G. 2003. So�ware veri�cation with blast. In SPIN Workshop on
Model Checking of So�ware.

[12] Ho, Y.-C. 1999. An explanation of ordinal optimization: So� computing for hard problems. Information Sci-
ences 113, 3��4, 169 – 192.

[13] Hutter, F., Hoos, H. H., and Leyton-Brown, K. 2011. Sequential model-based optimization for general algorithm

con�guration. In Proceedings of the 5th International Conference on Learning and Intelligent Optimization.
[14] Kremenek, T., Ng, A. Y., and Engler, D. R. 2007. A factor graph model for so�ware bug �nding. In IJCAI. 2510–2516.
[15] Liang, P., Tripp, O., and Naik, M. 2011. Learning minimal abstractions. In POPL.
[16] Livshits, V. B., Nori, A. V., Rajamani, S. K., and Banerjee, A. 2009. Merlin: speci�cation inference for explicit

information �ow problems. In PLDI.
[17] Mishne, A., Shoham, S., and Yahav, E. 2012. Typestate-based semantic code search over partial programs. In OOPSLA.
997–1016.

[18] Mockus, J. 1994. Application of bayesian approach to numerical methods of global and stochastic optimization.

Journal of Global Optimization 4, 4.
[19] Naik, M., Yang, H., Castelnuovo, G., and Sagiv, M. 2012. Abstractions from tests. In POPL.
[20] Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W. 2002. Cil: Intermediate language and tools for analysis

and transformation of c programs. In Proceedings of the 11th International Conference on Compiler Construction. CC ’02.

Springer-Verlag, London, UK, UK, 213–228.

[21] Nori, A. V. and Sharma, R. 2013. Termination proofs from tests. In FSE.
[22] Oh, H., , Lee, W., Heo, K., Yang, H., and Yi, K. 2014a. Selective context-sensitivity guided by impact pre-analysis. In

PLDI.
[23] Oh, H., Heo, K., Lee, W., Lee, W., and Yi, K. 2012. Design and implementation of sparse global analyses for C-like

languages. In PLDI.
[24] Oh, H., Heo, K., Lee, W., Lee, W., and Yi, K. 2014b. Sparrow. h�p://ropas.snu.ac.kr/sparrow.

[25] Oh, H., Yang, H., and Yi, K. 2015. Learning a strategy for adapting a program analysis via bayesian optimisation. In

OOPSLA.
[26] Rasmussen, C. E. and Williams, C. K. I. 2005. Gaussian Processes for Machine Learning (Adaptive Computation and
Machine Learning). �e MIT Press.

[27] Raychev, V., Vechev, M., and Krause, A. 2015. Predicting program properties from ”big code”. In POPL.
[28] Raychev, V., Vechev, M., and Yahav, E. 2014. Code completion with statistical language models. In PLDI.
[29] Sankaranarayanan, S., Chaudhuri, S., Ivancic, F., and Gupta, A. 2008a. Dynamic inference of likely data

preconditions over predicates by tree learning. In ISSTA.
[30] Sankaranarayanan, S., Ivancic, F., and Gupta, A. 2008b. Mining library speci�cations using inductive logic

programming. In ICSE.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

http://ropas.snu.ac.kr/sparrow

1:36 Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi

[31] Schkufza, E., Sharma, R., and Aiken, A. 2014. Stochastic optimization of �oating-point programs with tunable

precision. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation.
PLDI ’14. ACM, New York, NY, USA, 53–64.

[32] Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., and Nori, A. V. 2013a. A data driven approach for

algebraic loop invariants. In ESOP.
[33] Sharma, R., Gupta, S., Hariharan, B., Aiken, A., and Nori, A. V. 2013b. Veri�cation as learning geometric concepts.

In SAS.
[34] Sharma, R., Nori, A. V., and Aiken, A. 2012. Interpolants as classi�ers. In CAV.
[35] Smaragdakis, Y., Kastrinis, G., and Balatsouras, G. 2014. Introspective analysis: Context-sensitivity, across the

board. In PLDI.
[36] Snoek, J., Larochelle, H., and Adams, R. P. 2012. Practical bayesian optimization of machine learning algorithms. In

26th Annual Conference on Neural Information Processing Systems.
[37] Storn, R. and Price, K. 1997. Di�erential evolution - a simple and e�cient heuristic for global optimization over

continuous spaces. Journal of Global Optimization 11, 341–��359.
[38] Wales, D. J. and Doye, J. P. K. 1997. Global optimization by basin-hopping and the lowest energy structures of

lennard-jones clusters containing up to 110 atoms. Journal of Physical Chemistry A 101, 28, 5111��–5116.
[39] Zhang, X., Mangal, R., Grigore, R., Naik, M., and Yang, H. 2014. On abstraction re�nement for program analyses

in datalog. In PLDI.
[40] Zhang, X., Naik, M., and Yang, H. 2013. Finding optimum abstractions in parametric data�ow analysis. In PLDI.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2016.

	Abstract
	1 Introduction
	2 Overview
	2.1 Partially Flow-Sensitive Analysis
	2.2 Adaptation Strategy Parameterized with w
	2.3 Learning the Parameter w

	3 Adaptive Static Analysis
	3.1 Goal

	4 Parameterized Adaptation Strategy
	4.1 Feature Extraction
	4.2 Scoring
	4.3 Selecting Top-k Components

	5 Our Learning Algorithm
	5.1 The Optimization Problem
	5.2 Learning via Random Sampling
	5.3 Learning via Bayesian Optimization
	5.4 Learning with Ordinal Optimization

	6 Instance Analyses
	6.1 Adaptive Flow-Sensitive Analysis
	6.2 Adaptive Context-Sensitive Analysis
	6.3 Adaptive Widening-with-Thresholds

	7 Experiments
	7.1 Partial Flow-Sensitivity
	7.2 Adding Partial Context-Sensitivity
	7.3 Adaptive Widening-with-Thresholds
	7.4 Performance of Ordinal Optimization
	7.5 Comparison to Other Optimization Algorithms

	8 Related Work and Discussion
	9 Conclusion
	Acknowledgments
	References

