
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 0000; 00:1–28
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Selective Conjunction of Context-sensitivity and Octagon Domain
toward Scalable and Precise Global Static Analysis

Kihong Heo1, Hakjoo Oh2∗ Kwangkeun Yi1

1 Seoul National University
2 Korea University

SUMMARY

We present a practical technique for achieving a scalable and precise global static analysis by selectively
applying context-sensitivity and the octagon relational domain. For precise analysis, context-sensitivity and
relational analysis are key properties but it has been hard to practically combine both of them. Our approach
turns on those precision improvement features only when the analysis is likely to improve the precision to
resolve given queries. The guidance comes from an impact pre-analysis that estimates the impact of a fully
context-sensitive and relational octagon analysis. We designed a cost-effective pre-analysis and implemented
this method in a realistic octagon analysis for full C. The experimental results show that our approach proves
8 times more queries, while saving the time cost by 73.1% compared to a partially relational octagon analysis
enabled by a syntactic heuristic.
Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Static analysis; Context-sensitive analysis; Relational analysis; Abstract interpretation

1. INTRODUCTION

In practice, both context-sensitivity and relational analysis are essential for verifying elaborate
semantic properties of programs in static analysis. Context-sensitivity, such as k-callstring
approach [13, 14], differentiates the analysis of a procedure by different calling contexts, which is
essential for precision in global analysis; relational domain, such as the octagon abstract domain [9],
reasons about the relationship between variables to verify non-trivial numerical properties.

In order to employ these techniques in a cost-effective way, the selective X-sensitive
approach [12] was proposed to use context-sensitivity and relational domain cost-effectively. Given
a target precision improving technique (e.g., context-sensitivity or relational analysis), the approach
first runs a pre-analysis that uses the technique in a fully precise way but aggressively approximates
other precision aspects. This pre-analysis estimates the impact of the X-sensitivity on the main
analysis, which guides the main analysis to apply the precision only when it improves the final
analysis results. In [12], the approach has been used to develop selective context-sensitive (but non-
relational) analysis and selective relational (but context-insensitive) analysis.

However, in practice, it is often imprecise to separately apply those sensitivities, and a naive
combination of them does not scale. For example, an octagon relational analysis can be hardly

†E-mail: hakjoo oh@korea.ac.kr
∗Correspondence to: Programming Research Laboratory, College of Informatics, Korea University, Anam-dong 5-ga,
Seongbuk-gu Seoul 136-713, Korea

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2 HEO ET AL.

precise without context-sensitivity, since the analysis cannot maintain variable relationships across
procedure boundaries. Suppose that a procedure is called at two call-sites, one with constraint a = x
and the other with b = x where both a and b are variables of which values are unknown. Because
the octagon domain cannot express the disjunction a = x ∨ b = x, the procedure is analyzed with
> (i.e., no relational information). We observed that, in real C programs, queries that require such
inter-procedural reasoning on variable relationships are prevalent (Section 7). Unfortunately, the
previous selective X-sensitive analyses estimate each sensitivity separately so that it cannot select
those queries. Furthermore, naively combing the existing pre-analyses suffers from the huge cost of
the combinatory sensitivities.

In this paper, we present a practical technique that selectively combines context-sensitivity and
the octagon relational analysis. The basic idea is the existing selective X-sensitive approach [12].
We take both the octagon domain and context-sensitivity into account simultaneously: 1) we design
a pre-analysis that conservatively estimates the “symbiotic” effect of both the fully context-sensitive
and fully relational octagon analysis; 2) the pre-analysis predicts where the combination of the two
precision-improving techniques will help to prove given queries; 3) the selective main analysis is
derived from the guidance of the pre-analysis results. Our new analysis is different from the previous
one [12] in two aspects. First, our analysis is selective both in tracked variable relations and context-
sensitivity while the previous approach is selective only in each sensitivity. Second, we propose a
cost-effective pre-analysis equipped with the summary-based context-sensitivity [13]. Instead of
computing all possible contexts, the new pre-analysis differentiates only a particular set of contexts
related to queries that is derived from a backward pre-analysis.

Our experimental results show that the selective context-sensitive and relational analysis is
precise and scalable. We implemented the selective analysis on top of our Sparrow framework [15].
In experiments with various C benchmarks, the analysis scaled up to 100KLOC and proved 201
queries among 206 queries. In the comparison with the conventional octagon analysis with syntactic
variable packing [9], the new analysis proves 8 times more queries, saving 73.1% of the analysis’s
time overhead on average.

Contributions Our contributions are as follows:

• We present a new method for achieving context-sensitive relational analysis that is precise and
also scalable. We use the selective X-sensitive approach to develop an analysis that applies
the octagon relational analysis and context-sensitivity only when they are necessary.

• To this end, we design a cost-effective impact pre-analysis. The pre-analysis aims at
predicting where context-sensitivity and relational information would help during the main
analysis. We provide a practical design to tame the huge sensitivities instead of naively
combining the existing pre-analyses.

• We experimentally show the effectiveness of our approach on an industrial-strength static
analyzer for C. Our approach proved 8 times more queries with 73.1% less overhead
compared to the existing syntactic heuristic-based approach on average.

2. OVERVIEW

We illustrate our approach with a simple example program in Figure 1. The program contains two
queries at lines 9 and 14. The first query asks whether variable x is greater than n, and the second
one asks the question for variables z and m. The goal of static analysis is to prove (or disprove) the
queries. Note that the first query always holds but the second one does not. When procedure f is
called (from call-sites 21 and 24), the value of parameter x is always greater than parameter y, i.e.,
x > y in the body of f. By the conditional statements at lines 5–7, y > n holds at line 9, and hence
x > n. On the other hand, at line 13, m may be greater than z depending on the user input.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

SELECTIVE CONJUNCTION OF CONTEXT-SENSITIVITY AND OCTAGON DOMAIN 3

1 int inc(int i) { return i + 1; }
2

3 void f(int x, int y){ // x > y
4 n = input();
5 if(n >= y){
6 y = n + 64;
7 x = y;
8 }
9 assert(n < x); // Query 1

10 }
11

12 void g(int z){
13 m = input();
14 assert(m < z); // Query 2
15 }

16 void main(){
17 b = input();
18 d = input();
19

20 a = inc(b);
21 f(a, b); // a > b
22

23 c = inc(d);
24 f(c, d); // c > d
25

26 g(a);
27 g(c);
28 }

Figure 1. Example Program

Context-Sensitive & Relational Analysis In order to prove the first query, a static analysis must
be both context-sensitive and relational. Non-relational analyses, such as interval analysis, fail
(even with context-sensitivity), simply because they are unable to express invariants like x > y and
y > n. Relational analyses such as octagon analysis are able to express such invariants but cannot
properly maintain them without context-sensitivity. For example, suppose that at lines 21 and 24
(after parameter binding) an octagon analysis infers a > b ∧ x = a ∧ y = b (hence x > y) and
c > d ∧ x = c ∧ y = d (hence x > y), respectively. Without context-sensitivity, these two input
states are merged, but because the octagon domain is not disjunctive, the merged state is represented
by >.† Thus, the relationship x > y is lost in the body of procedure f.

Need of Selective Approach However, the fully context-sensitive and relational octagon analysis
is prohibitively impractical. Notwithstanding its impractical performance, such a full precision is
not even necessary to prove given queries. For instance, in order to prove the query at line 9, it is
necessary to apply context-sensitivity only to call-sites 20, 21, 23, and 24. Furthermore, we do not
need to track, for example, relationships between variables a and c. For the query at line 14, it is
useless to apply context-sensitivity and relational domain, since the query is impossible to prove.

Our Selective Context-Sensitive & Relational Analysis Our approach applies context-
sensitivity and the octagon relational domain only when they are needed. We first run a pre-analysis
and predict that applying context-sensitivity and relational analysis is likely to help prove the
query at line 9, but is unlikely to help answer the query at line 14. The pre-analysis also finds
out the sensitivities to answer the first query: it is sufficient to analyze 1) variable relationships
within {a,b,i,x,y} while distinguishing call-sites 20 and 21, and 2) variable relationships within
{c,d,i,x,y} while distinguishing call-sites 23 and 24. Then, the main octagon analysis runs in a
selective context-sensitive and relational way using this information, which still proves the query at
line 9.

Impact Pre-Analysis We design the pre-analysis following the approach in [12]. That is, we
design an impact pre-analysis that estimates the impact of the fully context-sensitive and relational
octagon analysis. The pre-analysis is fully precise in keeping context-sensitivity and variable
relations while abstracting other precision aspects.

†For simplicity, we used an imprecise join operation. In practice, however, context-sensitivity of relational analyses is
still required to represent disjunctive properties, for example, when pointers are involved.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

4 HEO ET AL.

The pre-analysis uses a simple abstract domain of which element is a sound approximation of
a set of the octagons [9]. While the octagon domain represents a set of constraints in ±x± y ≤ c
where x, y ∈ Var, c ∈ Z ∪ {+∞}, the pre-analysis domain describes a set of abstract constraints of
±x± y v v where v ∈ {F,>}. Here,Fmeans finite integers and > includes +∞. The abstraction
is characterized by γ such that γ(F) = Z and γ(>) = Z ∪ {+∞}. Intuitively, the domain used in
the pre-analysis only distinguishes whether the difference of two variables is finite (F) or cannot be
bounded (>). For example, the assignment at line 6 produces two abstract constraints y− n vF
and n− y vF.

For efficiency, we further abstract the fully context-sensitive pre-analysis by only distinguishing
a set of specific input states related to queries. To this end, a backward pre-analysis infers the
weakest pre-conditions for each procedure that are sufficient to select each query in a procedure.
For example, the backward analysis for the first query starts from line 9 in Figure 1 and infers the
sufficient pre-condition at line 3 as y− x vF, for the query to hold. The approximated pre-analysis
only differentiates the calling context of f whether the inferred pre-condition holds or not.

We run this new pre-analysis and select queries that are proven in the pre-analysis domain. For
example, the first query is selected because n− x vF holds in the pre-analysis. Finally, we identify
the call-sites to apply context-sensitivity and the variable groups to relate together. The sensitivities
are derived by observing contexts and relationships that contribute the query to beF.

3. PROGRAMS

We assume that a program is represented by a control-flow graph (C,→,F, ι), where C denotes the
set of program points, (→) ⊆ C×C denotes control-flow edges between program points. F is the
set of procedure ids and ι ∈ C is the entry node of the main procedure. Node c ∈ C in the program
is one of the five types:

C = Ce (Entry Nodes)] Cx (Exit Nodes)
] Cc (Call Nodes)] Cr (Return Nodes)] Ci (Internal Nodes)

Each procedure f ∈ F has a single entry and exit node. In case the function has multiple exit nodes
— return statements in C —, we replace them, except for the last one, by goto statements whose
destinations are the last exit node of the function. We write entryof(f) and exitof(f) for these nodes.
Given node c ∈ C, fid(c) denotes the procedure enclosing the node. Cf denotes a set of all program
points in f . Each call-site in the program is represented by a pair of call and return nodes. Given
return node c ∈ Cr, we write callof(c) for the corresponding call node. We assume for simplicity
that there are no indirect function calls such as calls via function pointers (In our implementation,
we resolve all function pointers using a flow-insensitive pointer analysis, so that no indirect calls
appear in the main analysis).

For simplicity, we handle parameter passing and return values of procedures via simple syntactic
encoding. Recall that we represent call statement x := fp(e) (where p is a formal parameter of
procedure f) with call and return nodes. In our program, the call node has command p := e, so
that actual parameter e is assigned to formal parameter p. For return values, we assume that each
procedure f has variable rf and the return value is assigned to rf : that is, we represent return
statement return e of procedure f by rf := e. The return node has command x := rf , so that the
return value is assigned to the original return variable. We assume that all variables have unique
names. For brevity, we further assume that there are no recursive procedures. ‡

We assume that each node c ∈ C contains a single primitive command. We interchangeably write
c for both a program point and its corresponding primitive command. For simplicity, we consider

‡Our approach does not apply context-sensitivity to recursive functions and analyzes them context-insensitively. Note that
we cannot use the functional approach to context-sensitivity [13], because the domain of octagons is infinite. Applying
the functional approach in octagon analysis is an open problem and beyond the scope of this paper.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

SELECTIVE CONJUNCTION OF CONTEXT-SENSITIVITY AND OCTAGON DOMAIN 5

primitive commands in the following grammar:

c → skip | x := k | x := ±y + k | ±x ≤ k | ±x± y ≤ k | x :=? | x ≤?

where k ∈ Z denotes an integer constant and x, y ∈ Var range over program variables. The first five
primitive commands are the ones whose semantics can be precisely tracked by the octagon domain:
the octagon domain can precisely handle assignments of the forms x := k and x := ±y + k, and
guards of the forms ±x ≤ k and ±x± y ≤ k. The last two primitive commands represent all the
other types of commands whose semantics is too complex to be described in the octagon domain,
such as non-octagonal assignments like x := ay + b and non-octagonal guards like x ≤ ay + b
(a 6= 0,±1).

We assume that a set of queries (Q ⊆ C× Var × Var) is given in the program. Query (c, x, y) ∈ Q
represents a predicate on integer y − x < 0 at program point c.

Other Language Features Although we use a subset of C for presentation, our implementation
supports full C, including pointer arithmetics, function pointers, and recursions. We pre-run a
flow-insensitive and allocation-site-based pointer analysis to resolve pointers (including function
pointers) in the program. For each abstract location (i.e., allocation-site), we maintain the size,
offset, and type information of allocation-sites, which allows us to handle pointer arithmetics and
type casts. For example, consider the type cast p = (char*)a, where a points to an array of 10
integers. After the type casting, the pointer p points to an array of 40 characters. All elements of an
array are merged into a single abstract cell (i.e., array smashing). Ignoring recursive functions is only
for presentation brevity; in our approach, recursive functions are analyzed context-insensitively (see
Section 7). More detailed information about the baseline analyzer (Sparrow) is available in [11].

4. SELECTIVE CONTEXT-SENSITIVE & SELECTIVE RELATIONAL ANALYSIS

In this section, we design a class of octagon analyses that is parameterized by context-sensitivity
and variable packs. We begin with the definition of the conventional octagon analysis (Section 4.1).
We first extend the analysis to a packed octagon analysis that selectively tracks the relationships
between variables (Section 4.2); the octagon for a pack of variables keeps only the octagonal
constraints for those variables. Then, we extend the resulting analysis to its selective context-
sensitive version (Section 4.3).

4.1. The Basic Octagon Analysis [9]

The octagon domain aims to track the lower and upper bounds of x+ y and x− y for all program
variables x and y. That is, an octagon is represented by a set of octagonal constraints of form
±x± y ≤ k where x, y ∈ Var and k is an element in Z∞ = Z ∪ {+∞}.

A set of octagonal constraints is represented by a difference bound matrix on Z∞ (DBM, for
short). Let x̄ denote the negative form (i.e. −x) of variable x ∈ Var. Also, let Var be the set
of variables in Var and their negative forms: Var = Var ∪ {x̄ | x ∈ Var}. Then, every octagonal
constraint over Var can be represented by potential constraints over Var of form j − i ≤ k where
i, j ∈ Var . For example, octagonal constraint x+ y ≤ 1 is represented by two potential constraints
x− ȳ ≤ 1 and y − x̄ ≤ 1. Finally, octagonal constraints over variables in Var are represented by
2n× 2nDBM where n = |Var|. Each entry oij of DBM o represents one potential constraint j − i ≤
oij where i, j ∈ Var and oij ∈ Z∞. Note that not every DBM represents octagonal constraints and
only coherent DBMs do (in the following, x̄ = x): ∀o, i, j ∈ Var . oij = oj̄ī.

The octagon domain is a complete lattice (O,vO,⊥O,>O,tO,uO) where O is the set of coherent
DBMs, ⊥O is the bottom element, and >O is the top element such that (>O)ij = +∞ for all i, j.
The partial order vO, join tO, and meet operator uO are defined as pointwise liftings of those on
Z∞.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

6 HEO ET AL.

Jx := kK(o) = o′• where o′ij =


−2k (i = x, j = x̄)
2k (i = x̄, j = x)(
Jx :=?K(o)

)
ij

otherwise

Jx := y + kK(o) = o′• where o′ij =


−k (i = x, j = y or i = ȳ, j = x̄)
k (i = y, j = x or i = x̄, j = ȳ)(
Jx :=?K(o)

)
ij

otherwise

(
Jx := x+ kK(o)

)
ij

=


oij − k (i = x, j 6∈ {x, x̄} or i 6∈ {x, x̄}, j = x̄)
oij + k (i = x̄, j 6∈ {x, x̄} or i 6∈ {x, x̄}, j = x)
oij − 2k (i = x, j = x̄)
oij + 2k (i = x̄, j = x)
oij otherwise

(
Jx := −xK(o)

)
ij

=


oīj (i ∈ {x, x̄}, j 6∈ {x, x̄})
oij̄ (i 6∈ {x, x̄}, j ∈ {x, x̄})
oīj̄ (i, j ∈ {x, x̄})
oij otherwise

Jx := −yK = Jx := −xK ◦ Jx := yK

Jx := −x+ kK = Jx := x+ kK ◦ Jx := −xK

Jx := −y + kK = Jx := x+ kK ◦ Jx := −yK

(
Jx :=?K(o)

)
ij

=

 +∞ (i ∈ {x, x̄}, j 6∈ {x, x̄} or i 6∈ {x, x̄}, j ∈ {x, x̄})
0 (i = j = x or i = j = x̄)
oij otherwise(

Jx ≤ kK(o)
)
ij

= o′• where o′ij =

{
min(oij , 2k) (i = x̄, j = x)
oij otherwise

(
J−x ≤ kK(o)

)
= o′• where o′ij =

{
min(oij , 2k) (i = x, j = x̄)
oij otherwise

(
Jx− y ≤ kK(o)

)
= o′• where o′ij =

{
min(oij , k) (i = y, j = x or i = x̄, j = ȳ)
oij otherwise

(
Jx+ y ≤ kK(o)

)
= o′• where o′ij =

{
min(oij , k) (i = ȳ, j = x or i = x̄, j = y)
oij otherwise

(
J−x− y ≤ kK(o)

)
= o′• where o′ij =

{
min(oij , k) (i = y, j = x̄ or i = x, j = ȳ)
oij otherwise

Jx ≤?K(o) = o

Figure 2. Abstract semantics of primitive commands with octagon domain.

Among many DBMs that represent the same set of octagonal constraints, there exists the smallest
element which is strongly closed. We write o• for o’s strong closure. DBM o is strongly closed if
and only if the following conditions are satisfied:

 ∀i, j, k ∈ Var . oij ≤ oik + okj
∀i, j ∈ Var . oij ≤ (oīi + oj̄j)/2
∀i ∈ Var . oii = 0.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

SELECTIVE CONJUNCTION OF CONTEXT-SENSITIVITY AND OCTAGON DOMAIN 7

Figure 2 shows the abstract semantics JcK ∈ O→ O of primitive commands when the input state
is not ⊥O (for all command c, JcK(⊥O) = ⊥O). The first two and the middle five cases explicitly
enforce the resulting octagon to be strongly closed. Instead, Jx := x+ kK preserves strong closures.
Jx :=?K forgets the constraints that involve the assigned variable, as the octagon domain cannot
track this case precisely. §

Example 1. For example, consider the following example program:

1 int a = b;
2 int c = input(); // User input
3 for (i = 0; i < b; i++) {
4 assert (i < a); // Query
5 }

At the query point of the program, the octagon analysis computes the following DBM:

a −a b −b c −c i −i
a 0 ∞ 0 ∞ ∞ ∞ −1 ∞
−a ∞ 0 ∞ 0 ∞ ∞ ∞ ∞
b 0 ∞ 0 ∞ ∞ ∞ −1 ∞
−b ∞ 0 ∞ 0 ∞ ∞ ∞ ∞
c ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞
−c ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞
i ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
−i ∞ −1 ∞ −1 ∞ ∞ ∞ 0

(1)

The ij-th entry mij of this matrix means an upper bound ej − ei ≤ mij , where ej and ei are
expressions associated with the j-th column and the i-th row of the matrix respectively and they are
variables with or without the minus sign. Note that the matrix records −1 and∞ as upper bounds
for i− a, which means that the value of i is less than the value of a and the query is proved.

4.2. Packed Octagon Analysis

We consider a domain of packed octagons that assigns an octagon to each group of variables, pack.
The octagon associated with a pack expresses only the octagonal constraints over the variables
in that pack. The intuition behind the packed octagon domain is that not every pair of variables
has a meaningful relationship and only a portion of them contributes to the precision of the
analysis. We call a set Π ⊆ ℘(Var) of packs as packing configuration. We assume that a packing
configuration Π covers the set of program variables (

⋃
Π = Var), and all packs are disjoint.

Packed octagon domain PO(Π) parameterized by packing configuration Π is a complete lattice
(PO(Π),vPO,⊥PO,>PO,tPO,uPO) where

PO(Π) = Π→ O.

The domain operators (join, meet, widening, strong closure, etc), the top and the bottom elements
can be obtained from pointwise lifting of those of the octagon domain.

§To restore the precision to some degree, several methods are proposed to model more elaborate constraints in the octagon
domain, but are orthogonal to our method.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

8 HEO ET AL.

We extend the abstract semantics of commands JcK : O→ O to JcKΠ : PO(Π)→ PO(Π) as
follows:

JcKΠ(po) = λπ ∈ Π.



Jx := kK(po(π)) (c = x := k ∧ x ∈ π)
Jx := ±y + kK(po(π)) (c = x := ±y + k ∧ x ∈ π ∧ y ∈ π)
Jx ≤ kK(po(π)) (c = x ≤ k ∧ x ∈ π)
Jx ≤ ±y + kK(po(π)) (c = x ≤ ±y + k ∧ x ∈ π ∧ y ∈ π)
Jx :=?K(po(π)) (c = x := y + k ∧ x ∈ π ∧ y 6∈ π)
Jx ≤?K(po(π)) (c = x ≤ y + k ∧ x ∈ π ∧ y 6∈ π)
Jx :=?K(po(π)) (c = x :=? ∧ x ∈ π)
Jx ≤?K(po(π)) (c = x ≤? ∧ x ∈ π)
po(π) otherwise

The extended abstract semantics transforms the octagon of a pack only when the primitive command
can update any variable in the pack. All the cases are obvious pointwise liftings of JcK except the fifth
and sixth one. If a pack misses some variables in the commands (i.e. the command is x := y + k and
y is not in the pack), the abstract semantics cannot establish a new octagonal constraint, but forgets
the relations for the assigned variable.
Example 2. Consider the program in Example 1 and the variable pack Π = {{a, b, i}, {c}}. Then,
the packed octagon analysis computes the following DBM at the query point:

a −a b −b i −i
a 0 ∞ 0 ∞ −1 ∞
−a ∞ 0 ∞ 0 ∞ ∞
b 0 ∞ 0 ∞ −1 ∞
−b ∞ ∞ ∞ 0 ∞ ∞
i ∞ ∞ ∞ ∞ 0 ∞
−i ∞ −1 ∞ −1 ∞ ∞

(2)

Note that the matrix still records −1 as upper bounds for i-a and therefore the analysis can prove
the query. This analysis has the same precision as the original octagon analysis with reduced cost.

4.3. Context-Sensitive, Packed Octagon Analysis

Now, following [12], we extend the packed octagon analysis to be selectively context-sensitive. The
context-sensitivity of the analysis is determined by a context selector. Context selector K maps
procedures to sets of calling contexts, which are defined as sequences of call nodes:

K ∈ F→ ℘(C∗c)

where C∗c denotes the set of sequences of call-sites. We abuse the notation and denote byK the entire
set of calling contexts in K: that is, we write κ ∈ K for κ ∈

⋃
f∈FK(f). Nodes of the control-flow

graph are enriched to a set CK ⊆ C×C∗c by contexts in K:

CK = {(c, κ) | c ∈ C ∧ κ ∈ K(fid(c))}.

Control flow relation (→) ⊆ C×C is also extended to→K on CK :
Definition 1 (→K). (→K) ⊆ CK ×CK is the context-enriched control flow relation:

(c, κ)→K (c′, κ′) iff c→ c′ ∧ κ′ = κ (c′ 6∈ Ce]Cr)
c→ c′ ∧ κ′ = c ::K κ (c ∈ Cc ∧ c′ ∈ Ce)
c→ c′ ∧ κ = callof(c′) ::K κ′ (c ∈ Cx ∧ c′ ∈ Cr)

where (::κ) ∈ Cc ×C∗c → C∗c updates contexts according to κ:

c ::K κ =

{
c · κ (c · κ ∈ K)
ε otherwise

where ε is the empty call sequence.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

SELECTIVE CONJUNCTION OF CONTEXT-SENSITIVITY AND OCTAGON DOMAIN 9

Next, we define the context-sensitive and packed octagon analysis. Abstract domain D of the
analysis is defined with K and Π:

D = CK → PO(Π)

The analysis keeps multiple abstract states at each program node c, one for each context κ ∈
K(fid(c)). Abstract semantic function F : D→ D is defined as follows:

F (X) = X0 tNext(X)

where X0 is the initial state. Next is defined with JcKΠ and→K :

Next(X)(c, κ) = JcKΠ
(⊔
{X(c0, κ0) | (c0, κ0)→K (c, κ)}

)
.

5. IMPACT PRE-ANALYSIS AND ITS USE

The goal of our pre-analysis is to estimate the behavior of the octagon analysis that is fully relational
and context-sensitive at the same time. At each program point, the pre-analysis computes a sound
approximation of a set of possible octagons during the main analysis and considers all the possible
calling contexts and variable relationships (that is, the pre-analysis is fully context-sensitive and
fully relational). Yet, the pre-analysis is more efficient than the main analysis because its numerical
domain is approximated.

In Section 5.1, we design such an impact pre-analysis. In Section 5.2, we use the pre-analysis
results to derive a context selector and a packing configuration for the main octagon analysis. Also,
we prove that the resulting selective main analysis is guaranteed to benefit from the pre-analysis
results (Proposition 1).

5.1. Abstract Domain and Semantics

The pre-analysis uses a simple relational domain of which element approximates a set of the
octagons. Just like the octagon analysis, our pre-analysis aims to track lower and upper bounds
of x+ y and x− y for all program variables x and y. However, unlike the octagon domain, our pre-
analysis approximately tracks the bounds in {F,>V}, distinguishing only the information whether
the bound can be +∞ (>V) or not (F). ¶ For instance, whenever our pre-analysis computes abstract
constraint x− y vF at a program point, the main octagon analysis is likely to compute x− y ≤ n
where n 6= +∞ at the same program point. On the other hand, the pre-analysis does not precisely
predict the bound information in case of >V. By tracking only the binary values (F and >V),
instead of the infinitely many elements in Z∞, we can efficiently run a fully relational analysis as a
pre-analysis.

Example 3. Consider the program in Example 1. The pre-analysis computes the following matrix
for the query.

a −a b −b c −c i −i
a F > F > > > F >
−a > F > F > > > >
b F > F > > > F >
−b > F > F > > > >
c > > > > F > > >
−c > > > > > F > >
i > > > > > > F >
−i > F > F > > > F

(3)

Each entry of this matrix stores the pre-analysis’s prediction on whether the main octagon analysis
would be precise or not, i.e., whether putting a finite upper bound at the corresponding entry of its

¶We do not consider−∞ because Z∞ serves as upper bounds of octagons; octagons do not have−∞ as an upper bound.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

10 HEO ET AL.

matrix at the same program point (Example 1). Here,F means likely, and > unlikely. For instance,
the above matrix containsF for the entry for i− a, which means that the main octagon analysis is
likely to infer finite upper bounds of i− a. Notice that this predication is correct because the actual
upper bound inferred by the octagon analysis is −1, as can be seen in Example 1.

Note that a single state of the pre-analysis domain denotes a set of states of the octagon
analysis (in the same sense that a state of an ordinary static analysis denotes a set of concrete
states). Formally, the domain of sets of octagons (℘̄(O) = ℘(O) \ {∅}) is complete lattice (℘̄(O),⊆
, {⊥},O,t℘̄,u℘̄) that is downward-closed, i.e.,

∀O ∈ ℘̄(O).o, o′ ∈ O. o ∈ O ∧ o′ v o =⇒ o′ ∈ O

and the operations are defined pointwise:

X1 t℘̄ X2 = {x′ | x1 ∈ X1 ∧ x2 ∈ X2 ∧ x′ v x1 t x2}
X1 u℘̄ X2 = {x′ | x1 ∈ X1 ∧ x2 ∈ X2 ∧ x′ v x1 u x2}

The domain of abstract states is the following complete lattice (O],v],⊥],>],t],u]) where

O] = {⊥]} ∪ {F,>V}2n×2n.

Abstract state o] ∈ O] is either ⊥] or an 2n× 2n “abstract difference bound matrix” on {F,>V}
(DBM], for short). As in the octagon domain, the o]xy entry of the matrix stores the upper bound for
y − x (that is, y − x v o]xy). Each entry of the matrix is represented byF or >V, and abstract state
o] ∈ O] denotes a set of octagons that is characterized by the following Galois connection:

℘̄(O) −−→←−−α
γ

O]

α({⊥}) = ⊥],
(
α(O)

)
ij

=

{
F if

⊔
O 6= ⊥ ∧ (

⊔
O)ij 6= +∞

>V o.w.
γ(⊥]) = {⊥}, γ(o]) = {o | ∀i, j. o]ij =F =⇒ oij 6= +∞}

As in the octagon domain, we assume that O] is the set of coherent DBM]: ∀o].i, j ∈ Var .o]ij = o]
j̄ī

.
The domain operations (order, join, and meet) are defined pointwise using total orderF v >V.

Lemma 1 (Galois connection (α, γ)). (α, γ) is a Galois connection:

∀O ∈ ℘̄(O), o] ∈ O]. α(O) v o] ⇐⇒ O ⊆ γ(o])

Proof
When O = {⊥} or o] = ⊥], it is trivial by definition. It is enough to show the following:

∀i, j ∈ Var .
(
α(O)

)
ij
v o]ij ⇐⇒ {oij | o ∈ O} ⊆ {o′ij | o′ ∈ γ(o])}

Let X and Y be {oij | o ∈ O} and {o′ij | o′ ∈ γ(o])}, respectively. We consider the following cases:
(=⇒)

• When (α(O))ij =F:
For (α(O))ij v o]ij , o

]
ij is eitherF or >V.

– If o]ij =F then +∞ 6∈ Y = Z by definition. Because (α(O))ij =F, +∞ 6∈ X .
Therefore, X ⊆ Y .

– If o]ij = >V then Y = Z∞ by definition. Trivially, X ⊆ Y .

• When (α(O))ij = >V:
For (α(O))ij v o]ij , o

]
ij is >V. Thus, Y = Z∞ by definition. Trivially, X ⊆ Y .

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

SELECTIVE CONJUNCTION OF CONTEXT-SENSITIVITY AND OCTAGON DOMAIN 11

(⇐=)

• When +∞ 6∈ X:
For X ⊆ Y , Y is either Z or Z∞.

– If Y = Z then o]ij =F by definition. Because +∞ 6∈ X , (α(O))ij v o]ij .
– If Y = Z∞ then o]ij = >V by definition. Trivially, (α(O))ij v o]ij .

• When +∞ ∈ X:
For X ⊆ Y , Y is Z∞. Thus, o]ij = >V. Trivially, (α(O))ij v o]ij .

We also define the notion of strong closure for DBM]. DBM] o] is strongly closed if and only if
the following conditions are satisfied:

∀i, j, k o]ij v o
]
ik t o

]
kj

∀i, j o]ij v o
]
īi
t o]

j̄j

∀i o]ii =F

Note that, in the {F,>V} domain, the addition of two abstract values is equivalent to their join
(t), i.e., ∀v1, v2 ∈ V. v1 +V v2 = v1 t v2, and hence additions in the definition of strongly closed
octagon are interpreted as joins in this definition. Intuitively, the first two conditions mean 1) if
relationships k − i and j − k are bounded then relationship j − i is also bounded, 2) if i and j are
constants then relationship j − i is bounded.

Abstract domain D] of the pre-analysis is defined using context-selector for full context-
sensitivity K∞ = λf.C∗c and O] as follows:

D] = CK∞ → O]

Abstract semantics JcK] : O] → O] of our pre-analysis is defined in Figure 3. Whenever the pre-
analysis computes F, say x− y vF, it is guaranteed that the octagon analysis captures relation
x− y ≤ c and c 6= +∞. For instance, the pre-analysis computes F in statements Jx := kK] and
Jx := y + kK], because the octagon analysis can precisely analyze those cases. The semantics is not
symmetric in case of x := x+ k where k ≥ 1. Suppose there are two different variables x and y.
The pre-analysis approximates the upper bound of x− y to infinity (i.e. x− y v >V) as x increases
by x := x+ k. On the other hand, the upper bound of y − x is always finite in the octagon analysis,
hence y − x vF. This aggressive abstraction on the upper bound of x− y (>V rather than F) is
because of a practical issue. Our pre-analysis is proven to be sound with respect to the least fixed
point of the octagon analysis. However, the least fixed point cannot be computed in practice, and
instead, a widening operator is used to compute an over-approximation of it. So we defined the
abstract semantics of the pre-analysis to soundly handle common cases where the octagon analysis
loses precision due to widening. Consider the following code:

x = y;
while(*){

assert(x - y <= 0);
x = x + 1;

}

In this example, the main octagon analysis with the standard widening yields x− y ≤ +∞ inside
of the loop. To over-approximate the analysis result, we defined the semantics for x := x+ 1
approximately: (

Jx := x+ 1K](o])
)
yx

= >V

If we defined the semantics to produce F, the pre-analysis would select the query in the example
program. We found that this alternative selects too many unprovable queries in practice.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

12 HEO ET AL.

Jx := kK](o]) = (o]
′
)• where o]

′
ij =

{
F (i = x, j = x̄ or i = x̄, j = x)(
Jx :=?K](o])

)
ij

otherwise

Jx := y + kK](o]) = (o]
′
)• where o]

′
ij =


F (i = x, j = y or i = ȳ, j = x̄)
F (i = y, j = x or i = x̄, j = ȳ)(
Jx :=?K](o])

)
ij

otherwise

(
Jx := x+ kK](o])

)
ij

where k ≥ 1 =


o]ij (i = x, j 6∈ {x, x̄} or i 6∈ {x, x̄}, j = x̄)

>V (i = x̄, j 6∈ {x, x̄} or i 6∈ {x, x̄}, j = x)

o]ij (i = x, j = x̄)

>V (i = x̄, j = x)

o]ij otherwise(
Jx := x+ kK](o])

)
where k ≤ 0 = o]

(
Jx := −xK](o])

)
ij

=


o]
īj

(i ∈ {x, x̄}, j 6∈ {x, x̄})
o]
ij̄

(i 6∈ {x, x̄}, j ∈ {x, x̄})
o]
īj̄

(i, j ∈ {x, x̄})
o]ij otherwise

Jx := −yK] = Jx := −xK] ◦ Jx := yK]

Jx := −x+ kK] = Jx := x+ kK] ◦ Jx := −xK]

Jx := −y + kK] = Jx := x+ kK] ◦ Jx := −yK]

(
Jx :=?K](o])

)
ij

=


>V (i ∈ {x, x̄}, j 6∈ {x, x̄} or i 6∈ {x, x̄}, j ∈ {x, x̄})
F (i = j = x or i = j = x̄)

o]ij otherwise(
Jx ≤ kK](o])

)
= (o]

′
)• where o]

′
ij =

{
F (i = x̄, j = x)

o]ij otherwise

(
J−x ≤ kK](o])

)
= (o]

′
)• where o]

′
ij =

{
F (i = x, j = x̄)

o]ij otherwise

(
Jx− y ≤ kK](o])

)
= (o]

′
)• where o]

′
ij =

{
F (i = y, j = x or i = x̄, j = ȳ)

o]ij otherwise

(
Jx+ y ≤ kK](o])

)
= (o]

′
)• where o]

′
ij =

{
F (i = ȳ, j = x or i = x̄, j = y)

o]ij otherwise

(
J−x− y ≤ kK](o])

)
= (o]

′
)• where o]

′
ij =

{
F (i = y, j = x̄ or i = x, j = ȳ)

o]ij otherwise

Jx ≤?K](o]) = o]

Figure 3. Abstract semantics of primitive commands for the impact pre-analysis.

The pre-analysis result is defined as the least fixpoint of semantic function F] : D] → D] :

F](X) = X0 tNext](X)

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

SELECTIVE CONJUNCTION OF CONTEXT-SENSITIVITY AND OCTAGON DOMAIN 13

where X0 is the initial state and Next] is defined in a fully context-sensitive and relational way with
JcK] and→K∞ .

Next](X)(c, κ) = JcK]
(⊔
{X(c0, κ0) | (c0, κ0)→K∞ (c, κ)}

)
.

The following lemma shows the relation between the pre-analysis and the main octagon analysis.
Lemma 2 (Soundness). Let F∞ : (CK∞ → O)→ (CK∞ → O) be the semantic function for the
fully context-sensitive and relational analysis, i.e. K∞ = λf.C∗c and Π = {Var}‖:

F∞(X)(c, κ) = JcK
(⊔
{X(c0, κ0) | (c0, κ0)→K∞ (c, κ)

)
}

Then,
∀c, κ. lfpF∞(c, κ) ∈ γ((lfpF])(c, κ)) (4)

Proof
To prove the desired relationship (4), we first define the “collecting octagon analysis”, whose
abstract domain is

CK∞ → ℘̄(O)

and semantic function is

℘̄F∞ : (CK∞ → ℘̄(O))→ (CK∞ → ℘̄(O))

℘̄F∞(X)(c, κ) = ℘̄JcK
(⊔

℘̄
{X(c0, κ0) | (c0, κ0)→K∞ (c, κ)}

)
where ℘̄JcK(X) = {JcK(x) | x ∈ X}. Our pre-analysis is an abstraction of the collecting octagon
analysis with the following Galois connection (α0, γ0):

CK∞ → ℘̄(O) −−−→←−−−α0

γ0 CK∞ → O]

Note that (α0, γ0) is a Galois connection because (α, γ) is a Galois connection by Lemma 1. Then,
by the abstract interpretation framework,

∀c, κ. lfp℘̄F∞(c, κ) ⊆ γ
(
lfpF](c, κ)

)
(5)

when
α ◦ ℘̄(JcK) v JcK] ◦ α

holds. The latter holds because, according to the definitions of JcK and JcK] presented in Figure 2
and 3, the pre-analysis semantics (JcK]) is defined in a conservative way such that it gives F only
when the octagon semantics (JcK) always computes constant values.

We showed that (5) holds, but it still remains to prove (4). We prove (4) by showing the following:

∀c, κ. lfpF∞(c, κ) ∈ lfp℘̄F∞(c, κ)

which is proved by the fixpoint induction [8]. Let P be the following inclusive assertion:

P (X,Y)
def
= ∀c, κ. X(c, κ) ∈ Y (c, κ)

To prove is the following:

P (lfpF∞, lfp℘̄F∞) = ∀c, κ. lfpF∞(c, κ) ∈ lfp℘̄F∞(c, κ)

By the fixpoint induction, it is enough to show

∀n ∈ N. P (Fn∞(⊥), ℘̄Fn∞(⊥)).

The proof proceeds as follows:

‖For breivity, we use the octagon domain (O) rather than the packed octagon domain (PO(Π)) because we consider only
a single full pack (Π = {Var}).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

14 HEO ET AL.

• Base case P (⊥,⊥):
∀c, κ. ⊥(c, κ) = ⊥ ∈ {⊥} = ⊥(c, κ)

• Inductive case P (F k∞(⊥), ℘̄F k∞(⊥)) =⇒ P (F k+1
∞ (⊥), ℘̄F k+1

∞ (⊥)): To prove it, we need the
following two properties on ℘̄JcK and t℘̄:

– By definition of ℘̄JcK,

∀o ∈ O, O ∈ ℘̄(O). o ∈ O =⇒ JcK(o) ∈ ℘̄JcK(O). (6)

– By definition of t℘̄,

∀o1, o2 ∈ O, O1, O2 ∈ ℘̄(O). o1 ∈ O1 ∧ o2 ∈ O2 =⇒ o1 t o2 ∈ O1 t℘̄ O2. (7)

The inductive case is proved as follows

∀c, κ. F k+1
∞ (⊥)(c, κ) = F∞ ◦ F k∞(⊥)(c, κ)

= JcK
(⊔
{F k∞(⊥)(c0, κ0) | (c0, κ0)→K∞ (c, κ)

)
(by definition)

∈ ℘̄JcK
(⊔

℘̄
{℘̄F k∞(c0, κ0) | (c0, κ0)→K∞ (c, κ)}

)
(by (6) and (7) and I.H.)

= ℘̄F k+1
∞ (⊥)(c, κ)

5.2. Use of the Pre-Analysis Results

By running the pre-analysis, we select a set of queries that are likely to be proven by the main
analysis. We remind the reader that a set of queries (Q ⊆ C× Var × Var) is given in the program
and query (c, x, y) ∈ Q represents a predicate on integer y − x < 0 at program point c. Using
the pre-analysis results, we select queries Q] ⊆ Q as follows (we simply ignore κ such that
(lfpF])(c, κ) = ⊥]):

Q] = {(c, x, y) ∈ Q | ∀κ ∈ K∞.
(
(lfpF])(c, κ)

)
xy

=F}.

That is, if the pre-analysis gives the precise result (F) for variable pair (x, y) under every calling
context κ ∈ K∞ at program point c, then we select query (c, x, y). The intuition is that if the pre-
analysis computes F for a query then the main octagon analysis will not lose too much precision
and there is a chance to prove the query. Otherwise, if the pre-analysis computes >V, we regard this
as an indication that the main analysis is unlikely to prove the query, since the analysis result may
involve +∞.

The last step is to build context selector K and packing configuration Π that are helpful for the
main analysis to prove the selected query q. K and Π consists of two parts, respectively:

K(f) = KF(f) ∪K>(f)

Π = ΠF ∪Π>

The essential parts are KF and ΠF that include sensitivities that are required for the pre-analysis
to generate F value at query q; without the sensitivities in KF and ΠF, the pre-analysis cannot
assign F to the query q. To build KF and ΠF, we derive a set of pairs of sensitivities Sq =
{(K1, π1), · · · , (Kn, πn)} from the pre-analysis result. Intuitively, Ki and πi are collections of calling
contexts and variable packs that should be considered in order for the pre-analysis to computeF at
query q along different contexts (and hence the main octagon analysis produces a finite constant).
Then, KF and ΠF for query q are defined as follows:

KF(f) =
⋃

1≤i≤n

Ki(f) ΠF = {πi | 1 ≤ i ≤ n}

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

SELECTIVE CONJUNCTION OF CONTEXT-SENSITIVITY AND OCTAGON DOMAIN 15

The other parts denote context-insensitivity and non-relational variables.K> describes contexts that
do not need to be differentiated:

K>(f) =

{
{ε} if f 6= fid(cq)
∅ otherwise

where cq is the program point where the selected query q is located. Likewise, Π> contains all other
variables that we decide not to track their relations. For each unchosen variable x, we construct
singleton pack {x}:

Π> = {{x} | x ∈ Var \
⋃

ΠF}

We now explain how to find the set of sensitivities, Sq = {(K1, π1), · · · , (Kn, πn)}, for selected
query q ∈ Q] from the pre-analysis result. The idea is to observe semantic dependencies among
variable relations along each context. The dependency represents contexts and relations that are
required to generate theF value for the selected query.

To do so, we first construct the value-flow graph (Θ, ↪→) that represents the semantic
dependencies, where (Θ, ↪→) is defined as follows:

Θ = CK∞ × Var × Var (↪→) ⊆ Θ×Θ

To define edges, we define U(c, x, y) ⊆ Var × Var, the set of pairs of variables whose relationships
are required (during the pre-analysis) in order for variables x and y to have theF value at program
point c. Suppose command c is x := y + k and o] is the input state of JcK]. According to the
definition in Figure 3,

Jx := y + kK](o]) = (o]
′
)• where o]

′
ij =


F (i = x, j = y or i = ȳ, j = x̄)
F (i = y, j = x or i = x̄, j = ȳ)(
Jx :=?K](o])

)
ij

otherwise

Value
(
JcK](o])

)
xy

has no semantic dependencies on the input state, because it is always equivalent
toF. However,

(
JcK](o])

)
xz

, where z 6= x and z 6= y, depends on o]yz:

• When o]yz =F:(
JcK](o])

)
xz
vV

(
JcK](o])

)
xy
tV
(
JcK](o])

)
yz

(by definition of the strong closure)
= F tV (o]

′
)•yz (by definition of JcK])

vV F tV (o]
′
)yz (by definition of the strong closure)

= F tV
(
Jx :=?K](o])

)
yz

(by definition of the o]′)
= F tV o]yz (by definition of Jx :=?K])
= F tV F (o]yz =F)
= F

That is,
(
JcK](o])

)
xz

=F.
• When o]yz = >V:

Suppose
(
JcK](o])

)
xz

=F.(
JcK](o])

)
yz

= o]yz (by definition of JcK])
= >V(

JcK](o])
)
yz
vV

(
JcK](o])

)
yx
tV
(
JcK](o])

)
xz

(by definition of the strong closure)
= F tV

(
JcK](o])

)
xz

(by definition of JcK])
= F tVF (by assumption)
= F

By contradiction,
(
JcK](o])

)
xz

= >V.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

16 HEO ET AL.

U(x := k, i, j) =

 {(j, j)} i = x, j 6= x
{(i, i)} i 6= x, j = x
{(i, j)} otherwise

U(x := y + k, i, j) =



∅ i = x, j = y or i = y, j = x
{(y, j)} i = x, j 6= y
{(x, j)} i = y, j 6= x
{(i, x)} i 6= x, j = y
{(i, y)} i 6= y, j = x
{(i, j)} otherwise

U(x := x+ k, i, j) where k ≥ 1 =

 {(i, j)} i = x, j 6= x
∅ i 6= x, j = x
{(i, j)} otherwise

U(x := x+ k, i, j) where k ≤ 0 = {(i, j)}

U(x := −x, i, j) = {(i, j)}

U(x :=?, i, j) =

{
∅ i = x or j = x
{(i, j)} otherwise

U(±x ≤ k, i, j) =

 {(j, j)} i = x, j 6= x
{(i, i)} i 6= x, j = x
{(i, j)} otherwise

U(±x± y ≤ k, i, j) =



∅ i = x, j = y or i = y, j = x
{(y, j)} i = x, j 6= y
{(x, j)} i = y, j 6= x
{(i, x)} i 6= x, j = y
{(i, y)} i 6= y, j = x
{(i, j)} otherwise

U(x ≤?, i, j) = {(i, j)}

Figure 4. The definition of U for each type of primitive commands. We omit the trivial case (i.e., U(c, i, i) =
∅).

In this example, U(c, x, z) = {(y, z)}. In general, U is defined as follows:

Definition 2 (U). Use set U(c, x, y) for relation between variable x and y at program point c is
defined as follows:

U(c, x, y) = {(x0, y0) | ∀o], i, j, i0, j0. o] ∈ O] ∧
(
JcK](o])

)
ij

=F ∧
(
JcK](o]\i0j0)

)
ij

= >V}

where i ∈ {x, x̄}, j ∈ {y, ȳ}, i0 ∈ {x0, x̄0}, and j0 ∈ {y0, ȳ0}. o]\i0j0 is defined as follows:(
o] \i0j0

)
ij

= if (i = i0 ∧ j = j0) then >V else o]ij

In this way, use-set U(c, x, y) can be defined for each type of primitive commands in Figure 4. Now,
we define value-flow relation (↪→) that represents the semantic dependencies for variable relations
according to the primitive commands:

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

SELECTIVE CONJUNCTION OF CONTEXT-SENSITIVITY AND OCTAGON DOMAIN 17

CFG

1a = b+1

2call f 3x = a

4call g 5y = b

6y < x?

7c = b+2

8x = c

9call g

m f g h

Calling
Contexts

κ0 2·κ0 {4·2·κ0, 9·κ1} κ1

Context
Selector K = {m 7→ ε, f 7→ {2, ε}, g 7→ {4·2, 9}, h 7→ ε}

Figure 5. Example context selector. Gray and black nodes in CFG are source and query points, respectively.

Definition 3 (↪→). The value-flow relation (↪→) is defined as follows:

((c0, κ0), x0, y0) ↪→ ((c, κ), x, y) iff
(ι, ε)→∗K∞

(c0, κ0)→K∞ (c, κ) ∧ (x0, y0) ∈ U(c, x, y)

Example 4. Consider the control-flow graph in Figure 5. For node 2 and 8, the use sets are defined
according to Definition 2: U(2, a, b) = {(a, b)} and U(8, x, b) = {(c, b)}. Then the corresponding
value-flow relations are defined as follows:

((1, κ0), a, b) ↪→ ((2, κ0), a, b)

((7, κ1), c, b) ↪→ ((8, κ1), x, b)

The next step is to extract program slices that include all semantic dependencies for each query.
Program slices begin from sources (Φ) that do not have predecessors on the value-flow graph.

Definition 4 (Φ). Sources Φ are vertices in Θ where dependencies begin:

Φ = {((c0, κ0), x0, y0) ∈ Θ |6 ∃((c, κ), x, y) ∈ Θ. ((c, κ), x, y) ↪→ ((c0, κ0), x0, y0)}.

We compute the set of sources, Φ(c,x,y), on which the query depends.

Definition 5 (Φ(cq,xq,yq)). Sources on which the query (cq, xq, yq) depends:

Φ(c,x,y) = {((c0, κ0), x0, y0) ∈ Φ | ((c0, κ0), x0, y0) ↪→∗ ((cq, κ), xq, yq)}.

Example 5. Consider the control-flow graph in Figure 5. The black node (node 6) denotes the query
point, i.e., (cq, xq, yq) = (6, x, y). The gray nodes (node 1 and node 7) represent sources on which
the query depends, i.e., Φ(6,x,y) = {(1, a, b), (7, c, b)}.
Paths(c,x,y) denotes a set of all dependency paths for the query:

Definition 6 (Paths(cq,xq,yq)). The set of all dependency paths for the query (c, x, y) is defined as
follows:

Paths(cq,xq,yq) = {((c0, κ0), x0, y0) ↪→ · · · ↪→ ((c, κ), x, y) | ((c0, κ0), x0, y0) ∈ Φ(cq,xq,yq)}.

Example 6. Suppose κ0 and κ1 are the initial context of function m and h in Figure 5, respectively.
There exists two paths p1 and p2 for the query. p1 is constructed as follows:

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

18 HEO ET AL.

• variable relation b− a ≤F is generated at node 1 without any semantic dependencies and
proceeds to node 2.

• in between x and b at node 3 depends on relation between b and a because x = a, and proceeds
to node 4.

• relation between x and y at node 5 depends on relation between x and b because y = b, and
proceeds to node 6.

p2 is also constructed accordingly. That is, Paths(6,x,y) = {p1, p2} where

p1 =((1, κ0), a, b) ↪→ ((2, κ0), a, b) ↪→ ((3, 2 · κ0), x, b) ↪→ ((4, 2 · κ0), x, b)

↪→ ((5, 4 · 2 · κ0), x, y) ↪→ ((6, 4 · 2 · κ0), x, y)

p2 =((7, κ1), c, b) ↪→ ((8, κ1), x, b) ↪→ ((9, κ1), x, b) ↪→ ((5, 9 · κ1), x, y)

↪→ ((6, 9 · κ1), x, y)

Finally, we derive context selectors and variable packs. Suppose we have a dependency path from
source ((c0, κ0), x0, y0) to query ((cn, κn), xn, yn).

((c0, κ0), x0, y0) ↪→ ((c1, κ1), x1, y1) ↪→ · · · ↪→ ((cn, κn), xn, yn)

Note that κ0, κ1, · · · , κn are the calling contexts appearing in the pre-analysis which is fully
context-sensitive and κ0 is the context at the source. The partial contexts that will be used in the
selective analysis are defined as the difference between κi and κ0. If κ0 is a suffix of κi, then the
partial context for κi is defined as κ′i where κi = κ′i · κ0. The context κ′i is formally defined as
κi 	 κ0 = suffix(κi, κ0), and suffix(κi, κ0) is the longest common suffix of κi and κ0. If κi is a
suffix of κ0 then we use ε as the partial context for κi. The variable pack for the path is constructed
by collecting all variables on the path. Formally, the context selector and variable pack for each
dependency path of the query is defined as follows:
Definition 7 ((Kp, πp), Context Selector and Pack for Path p). Let p be a dependency path of query
from a source ((c0, κ0), x0, y0) to a query. The context selector Kp and pack πp for the path is defined
as,

Kp = λf.{κi 	 κ0 | fid(ci) = f ∧ ((ci, κi),) ∈ p}

πp = {zi | (, z0, z1) ∈ p ∧ i ∈ {0, 1}}
Example 7. For each path in Example 6, the context selectors and packs are defined as follows:

Kp1 = {m 7→ ε, f 7→ {2, ε}, g 7→ {4·2}} πp1 = {a, b, x, y}
Kp2 = {h 7→ ε, g 7→ {9}} πp2 = {b, c, x, y}

Then, sensitivity Sq is derived from the context selectors and packs for each path:
Definition 8 (Sq, Sensitivity). Let q be a query. The sensitivity for context sensitive and relational
analysis for our selective analysis is defined as follows:

Sq = {(Kp, πp) | p ∈ Pathsq}

Proposition 1 (Impact Realization). Let (c, x, y) ∈ Q] be a selected query. Let S be a set of
sensitivities for the query derived from the impact pre-analysis. Let K and Π be the context selector
and packing configuration defined with S. Let F be the semantic function of the selective context-
sensitive and relational main analysis with K and Π. Then, the selective main analysis is at least as
precise as the fully context-sensitive and relational pre-analysis for the selected query (c, x, y):

∀κ0 ∈ K∞.
(
lfpF](c, κ0)

)
xy

=F

=⇒ ∀(K, π) ∈ S, κ ∈ K(fid(c)).
(
lfpF (c, κ)(π)

)
xy
6= +∞.

Proof
See Appendix.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

SELECTIVE CONJUNCTION OF CONTEXT-SENSITIVITY AND OCTAGON DOMAIN 19

6. PRACTICAL IMPACT PRE-ANALYSIS

In this section, we further abstract the ideal impact pre-analysis to obtain practical efficiency.
Though the pre-analysis in Section 5.1 aggressively abstracts the numerical domain, it is still very
costly because of keeping full context-sensitivity and full relationships between variables. However,
because the abstract domain of the pre-analysis is simple and finite, we can practically abstract the
pre-analysis further by differentiating only the contexts that are relevant to the query. To this end, we
first redefine the ideal pre-analysis using the summary-based context-sensitivity of which analysis
results correspond with those of ∞-CFA [7]. The summary-based approach uses abstract states
(rather than call-strings) as calling contexts of procedures so that the new pre-analysis abstracts the
contexts by only considering a set of specific contexts (input states) related to the selected queries,
instead of manipulating all of them. The query-driven input is generated by a backward pre-analysis
that safely estimates the weakest pre-condition for query, at each function entry.

6.1. Summary-based Context-Sensitivity

First, we transform the pre-analysis in Section 5 to the summary-based one [13, 7]. We parameterize
the summary-based approach so that the degree of context-sensitivity is determined by a (summary-
based) context selector σ. Context selector σ assigns a set of calling contexts (i.e., abstract states) to
each function, that is, σ maps procedures to sets of calling contexts:

σ ∈ F→ ℘(O])

Let σ∞ be the context selector for full context-sensitivity: σ∞ assigns the entire set O] to each
procedure, i.e., σ∞ = λf.O]. Nodes of the control-flow graph are extended to context-enriched
nodes Cσ ⊆ C×O] with contexts in σ:

Cσ = {(c, o]) | c ∈ C ∧ o] ∈ σ(fid(c))}.

The fully context-sensitive pre-analysis result is defined as the least fixpoint of semantic function
G] : (Cσ∞ → O])→ (Cσ∞ → O]):

G](X) = X0 tNext]σ∞
(X)

where X0 denotes the initial states and Next]σ∞
is defined in a fully context-sensitive and relational

way as follows:

Next]σ∞
(X)(c, o]) =


JcK]
(⊔
{X(c0, o

]
0) | c0 → c ∧ o] = o]0}

)
(c 6∈ Ce ∪Cr)⊔

{X(c0, o
]
0) | c0 → c ∧ o] = X(c0, o

]
0)} (c ∈ Ce)⊔

{X(c0, o
]
0) | c0 → c ∧ X(callof(c), o]) = o]0} (c ∈ Cr)

At an intraprocedural node, which is neither an entry nor return node (c 6∈ Ce ∪Cr), the analysis
result at the current point (c, o]) is computed simply by applying the abstract semantics of
commands (JcK]) to the analysis results at preceding program points c0 with the same context o].
When calling a procedure (c ∈ Ce), the context of the procedure is initialized to the abstract state
(X(c0, o

]
0)) at the call-site. When a procedure returns to a return node (c ∈ Cr), the analysis resumes

with the context that invoked the procedure at the corresponding call-site.

6.2. Inferred Input States from a Backward Analysis

The fully context-sensitive summary-based analysis is impractical, since the size of the domain O]

is still huge. Thus, we further abstract the pre-analysis, so that it considers a particular set of calling
contexts. Specifically, we consider only the input states of procedures that are relevant to proving
queries. Given a query q = (cq, xq, yq), the corresponding input state of a procedure is obtained by
analyzing the procedure backward starting from the program point containing q. Initially, abstract

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

20 HEO ET AL.

state o]q ∈ O] at cq is the weakest state in O] that satisfies q: (note that q = (cq, xq, yq))

octq)ij =

{
F (i = xq, j = yq or i = ȳq, j = x̄q)
>V otherwise

With o]q, we perform the pre-analysis backwards, which leads to the corresponding input state. The
backward pre-analysis is characterized by the following backward semantic function B]q ∈ (C→
O])→ (C→ O]):

B]q(X) = Xq u Prev(X)

where Xq is the weakest initial state that satisfies the given query q:

Xq = >{cq 7→ o]q}

Prev is a one-step backward semantic function:

Prev(X) = JcK]↑
(l
{X(c0) | c→ c0}

)
The backward semantics of primitive commands, JcK]↑, is defined in Figure. 6. As we did for
the forward semantics, the backward semantics of the pre-analysis is similarly obtained from the
backward semantics of the octagon domain [9].∗∗ The pre-condition of procedure f is obtained by
computing the greatest fixpoint of B]q. That is, the set of abstract states, denoted σ(f), relevant to
proving the query q at the entry of procedure f is defined as follows:

σ(f) = {>]} ∪ {(gfpB]q)(entryof(f))}.

Example 8. Consider the example program in Figure 1. The inferred input states for each procedure
by the backward analysis are as follows:

σ(inc) = {>]} σ(f) = {>], o]} σ(g) = {>]}

where

o]ij =

{
F (i = x, j = y)
>V otherwise

Since inc has no query, the only inferred input state is >. For the query in f, the backward analysis
infers an abstract state such that y − x vF. The backward analysis cannot derive a promising input
state for the query in g.

6.3. Summary-based Context-sensitivity modulo Query

Next, we abstract the impact pre-analysis using the inferred input states. Suppose σ denotes the
context selector derived from the previous backward analysis. The abstraction is characterized by
the following Galois connection:

(Cσ∞ → O]) −−→←−−α
γ

(Cσ → O])

where
α(X) = λ(c, o]).

⊔
{X(c, o]0) | o]0 v o

]}.

∗∗In [9], the backward semantics is defined only for assignment statements. We extended the definition to conditional
statements as well.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

SELECTIVE CONJUNCTION OF CONTEXT-SENSITIVITY AND OCTAGON DOMAIN 21

Then, we define the semantic function G]σ ∈ (Cσ → O])→ (Cσ → O]) as follows:

G]σ = X0 tNext]σ(X)

where X0 is the initial state. Next]σ soundly approximates Next]σ∞
by distinguishing only a

particular set of inputs:

Next]σ(X)(c, o]) =
JcK]
(⊔
{X(c0, o

]
0) | c0 → c ∧ o] = o]0}

)
(c 6∈ Ce ∪Cr)⊔

{X(c0, o
]
0) | c0 → c ∧ o] w X(c0, o

]
0)} (c ∈ Ce)⊔

{X(c0, o
]
0) | c0 → c ∧ o]0 =

d
{o ∈ σ(f) | X(callof(c), o]) v o}} (c ∈ Cr ∧ f = fid(callof(c)))

Next]σ normally computes the analysis results of internal nodes in a procedure. At call sites, the input
state of the procedure does not lead to the calling context, but is over-approximated. Likewise, at
return nodes, the most precise summary that subsumes the input state at the corresponding call-site
is selected.

The following theorem shows that the query-driven, partially context-sensitive analysis is an over-
approximation of the fully context-sensitive summary-based analysis, which implies that using the
partial pre-analysis still guarantees the impact realization in the main analysis. Note that the result
holds for every partial context selector σ.

Lemma 3 (Over-approximation). Let (c, x, y) be a query. Let G]σ∞
be the semantic function for the

summary-based fully context-sensitive analysis andG]σ be the query-driven partial context-sensitive
analysis. Then,

o] ∈ σ(fid(c)).
(
lfpG]σ(c, o])

)
xy

=F =⇒
(
lfpG]σ∞

(c, o])
)
xy

=F

Proof
Note that Next]σ is defined as a sound approximation of Next]σ∞

:

α ◦Next]σ∞
v Next]σ ◦ α

By the fixpoint transfer theorem [3, 4], we have lfpGσ∞ v γ(lfpGσ), which implies the claim of the
lemma.

Example 9. Suppose we analyze the example in Figure 1. Summary-based context selector σ is
defined as in Example 8. At line 20, the calling context (input state) to inc is>] which is included in
σ(inc). After analyzing inc with the calling context, the analysis yields abstract state b− a vF at
line 21. Since the abstract state can be a possible calling context (after parameter binding) according
to σ(f), the pre-analysis analyzes f with the input. Likewise, the pre-analysis analyzes the other
procedure calls using σ. Finally, context selector K and variable packs Π are derived from the
selected query as in Section 5.

K ={inc 7→ {20, 23, ε}, f 7→ {21, 24}, g 7→ ε}
Π ={{a, b, n, x, y}, {c, d, n, x, y}}

7. EXPERIMENTS

7.1. Setting

We implemented our selective context-sensitive and relational analysis on SPARROW [6, 10, 11, 12,
15], an industrial-strength buffer overrun analyzer for full C. The analyzer is flow- and field-sensitive
and uses the interval domain [3] and octagon domain [9] as non-relational and relational numerical

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

22 HEO ET AL.

domains, respectively. Dynamically allocated heap locations are abstracted by their allocation sites.
The analyzer performs a global analysis which analyzes the whole program starting from the
main procedure. Our octagon analysis also uses the semantic modeling of Venet and Brat [16].
As reported, the octagon domain is not expressive enough to handle the byte-based representation
of array offsets. Consider the following example:

1 int* p = (int*) malloc (sizeof(int) * s);
2 for (i = 0; i < s; i++)
3 *(p+i) = ...

Assume that the size of an int variable is 4 bytes. Then, the exact loop invariant is as follows:

psize = 4 ∗ s
poffset = 0
0 ≤ i ≤ 4 ∗ s− 4

where psize and poffset are meta-variables that represent the size and offset of the array. The actual
offset at line 3 is poffset + i. Unfortunately, the octagon domain cannot express the general linear
inequalities. Instead, we introduce another metavariable pstride that represents the stride of the
array. In the model, the actual size and offset in bytes are pstride ∗ psize and poffset + pstride ∗ i,
respectively. Now the loop invariant is given as follows:

psize = s
poffset = 0
pstride = 4
0 ≤ i ≤ s− 1

We simply check buffer overflow queries based on the modeling. If a selected query is involved in
a recursive call, we simply ignore the query and did not consider it in selecting context-sensitivity
and variable packs. For example, suppose a query is judged promising and the slice of the program
that contributes to the query looks as follows:

source query
f g h
• • •

where f, g, and h are functions in the program, and g is a recursive function. Then, we exclude the
query; it is analyzed by a context-insensitive interval analysis.

7.2. Performance

We evaluated our approach compared to the existing syntactic heuristic-based approach [9] and the
context-insensitive selective relational analysis [12] for 8 GNU open-source projects. The syntactic
heuristics relates variables that are located in the same syntactic blocks [9]. We limited the maximum
pack size by 10 in the syntactic packing strategy. The existing selective approach [12] estimates
the behavior of the context-insensitive octagon analysis and selects only necessary variables that
will help to prove given queries. †† Instead, our new pre-analysis derives both calling contexts and
variable packs for the queries. The pre-analyses of both analyses use the same abstract domain
and semantic function of primitive commands. Thanks to the simplicity of the domain (O]), our
approach is able to reduce time and memory consumption. We use a sparse representation for the
matrices that haveF and>V as elements. We compute the shortest-path closure [9] using Dijkstra’s
algorithm instead of the strong closure (Section 5.1). In addition, the sensitivity (Definition 8) is

††In the previous work [12], we manually inlined several functions to enable context-sensitive reasoning, but the analyzer
is performed on the original programs to measure the net effect in these experiments.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

SELECTIVE CONJUNCTION OF CONTEXT-SENSITIVITY AND OCTAGON DOMAIN 23

Program LOC Q Syntactic Selective Relational Our Approach Comparison
prvn time prvn time prvn time prec time

spell-1.0 2,213 16 1 4.8 2 0.8 (2.0) 16 1.6 (1.5) +15 -35.4%
httptunnel-3.3 6,174 28 16 26.0 16 4.0 (9.2) 26 5.5 (12.3) +10 -31.5%
combine-0.3.3 11,472 23 0 142.7 2 20.4 (26.1) 23 18.1 (81.8) +21 -30.0%
bc-1.06 13,093 10 2 247.1 3 39.9 (97.4) 9 34.8 (69.2) +7 -57.9%
tar-1.17 20,258 17 6 1,043.2 6 98.9 (596.4) 17 191.0 (69.3) +11 -75.0%
less-382 23,822 13 0 3,031.5 6 601.7 (1,729.0) 13 596.2 (126.2) +13 -76.2%
bison-2.5 101,807 29 n/a n/a n/a n/a 29 649.1 (1,080.8) +29 n/a
bash-2.05a 105,174 70 n/a n/a 51 481.3 (20,966.7) 70 634.6 (3,605.2) +70 n/a
Total 284,013 206 25 4,495.3 86 1,246.9 (23,426.8) 201 2,130.9 (3,965.5) +176 -73.1%

Table I. Performance of the selective context-sensitive and relational analysis compared to the syntactic
heuristic-based packing strategy [9], and the context-insensitive selective relational analysis [12]. LOC
reports lines of codes of the programs.Q denotes the number of buffer-overrun queries whose proofs require
relational reasoning. prvn reports the number of queries that are proven by each analysis. Each X(Y) in
time represent the time cost of main analysis (X) and pre-analysis cost (Y) for each selective analysis.
Comparison shows additionally proven quires (prec) and the overhead (time) of our approach compared to

the syntactic heuristic-based one.

naturally derived during the pre-analysis. All experiments were done on a Linux 2.6 system with a
single core of Intel 3.07GHz box and 24GB of main memory.

Table I show the performance comparison between the three analyzers. Among all buffer accesses
in the programs, we collected a set of buffer overrun queries (Q) that require relational reasoning.
We measured the precision by the number of proven queries. In addition, we compared the time cost
of each main analysis and the pre-analysis cost of the two selective approaches.

The experimental results show that the proposed approach is precise and scalable. Among
206 queries, the new approach proved 201 (97.6%) queries while the syntactic heuristic and
the selective relational analysis proved only 25 (12.1%) and 86 (41.7%), respectively. It shows
that, in reality, most queries require relational reasoning beyond syntactic blocks, even across
procedure boundaries; the syntactic approach and context-insensitive relational analyses are not
precise enough. In addition, the proposed analysis scaled up to 100KLOC, while the previous one
failed in one case (bison-2.5). Our approach reduced the time consumption by 73.1% on average
for the small 6 programs compared to the syntactic heuristic-based analysis. In comparison to the
previous selective relational analysis [12], the new approach increased the main analysis cost 18.8%
but saved the pre-analysis cost by 87.6% on average; in total, the new approach saved 82.3%. Our
analyzer missed 5 queries (2.4%) because of the over-approximation of the pre-analysis domain.

Our new pre-analysis effectively selects queries and infers necessary calling contexts and variable
packs, subsuming the existing one, i.e. the proposed approach also selects queries that do not require
context-sensitivity. In addition, the new approach is 5.9 times faster than the previous top-down one.
The key factor for the analysis time reduction is the fixed set of input states of functions in the pre-
analysis. Instead of considering all possible inputs during the analysis, our approach abstracts them
into the prepared input states.

7.3. Discussion

This section reports additional information on the characteristics of context selectors and packing
configurations found in experiments. We measured the number of different callstrings and (non-
singleton) variable packs. In addition, we quantified the maximum and average sizes of them.

Table II shows the information for each benchmark program. The number of distinct call contexts
|K| and variable packs |Π| depend on the number of selected queries estimated by the pre-
analysis, since our approach generates a pair of a call string and a pack for each selected query.
We observe that the derived call-strings for the octagon analysis are shorter than those for the
interval analysis [12]. It means that tracking variable relationships between variables do not usually
require long call chains. The numbers of packs are reasonably small and the sizes vary on the target
programs, compared to those from the syntactic heuristics that blindly makes variable packs with a
given fixed threshold.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

24 HEO ET AL.

Context Selector Packing Configuration
Program |K| max avg |Π| max avg
spell-1.0 33 4 3.0 6 14 11.0
httptunnel-3.3 11 1 0.9 8 6 5.8
combine-0.3.3 12 1 0.9 13 7 3.7
bc-1.06 5 1 0.8 4 9 4.0
tar-1.17 3 1 0.7 7 8 3.9
less-382 7 1 0.9 8 18 6.3
bison-2.5 18 2 1.8 39 25 4.4
bash-2.05a 29 3 1.1 40 6 3.2

Table II. Characteristics of context selectors and packing configurations derived by our approach. |K| and
|Π| report the number of different callstrings and non-singleton variable packs, respectively. max and avg

report the maximum and average size of them.

We enumerate the representative cases that require context-sensitive and relational reasoning at
the same time.

• xmalloc is a wrapper function of malloc that takes the size of array and returns a newly
allocated array with the size. At line 4, the relationship between the size of nstr and len
is established through the function call. The array access at line 6 is proven to be safe by
tracking the relationships among pos, nstr and len in the loop. (excerpt from spell-1.0)

1 char* xmalloc(int size) { return malloc(size); }
2

3 void str_to_nstr(){
4 char* nstr = xmalloc(len+1); // len > 0
5 for(pos = 0; pos < len; pos++)
6 nstr[pos] = ...
7 }

• read until establishes the relationship between the parameter (data) and return value
(len). At line 8, the relationship between data and n through the function call is used to
prove the safety of the buffer access at the next line. (excerpt from httptunnel-3.3)

1 int read_until(char** data){
2 buf = malloc(len+1); // len > 0
3 *data = buf;
4 return len;
5 }
6

7 int http_parse_request(){
8 n = real_until(&data);
9 data[n-1] = 0;

10 }

• The relationship between the size of string and i established at line 10 is passed through
two function calls at line 12 and 6. The relationship is used to prove the safety at line 2.
(excerpt from bash-2.05a)

1 char* get_history_word_specifier(char* spec, int* index){
2 spec[*index] = ...
3 }
4

5 int history_expand_internal(char* string, int i){
6 get_history_word_specifier(string, &i);
7 }
8

9 int history_expand(...){
10 string = malloc(l); // l > 0
11 for (i = 0; i < l; i++)
12 history_expand_internal(string, i);
13 }

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

SELECTIVE CONJUNCTION OF CONTEXT-SENSITIVITY AND OCTAGON DOMAIN 25

8. RELATED WORK

8.1. Selective X-sensitive Approach

This work extends the selective X-sensitive approach [12], and proposes an effective solution to
achieve the global relational analysis. In the previous work, we provided a general approach and
applied it to develop a selective context-sensitive interval analysis and selective relational analysis
with the octagon domain. This work reuses the general idea but applies it to be selective both in
context-sensitivity and relational analysis in a single analysis. Also, we provide a new design of the
impact pre-analysis with the summary-based context-sensitivity.

8.2. Global Octagon Analysis

Existing global octagon analyzers [16, 2, 5] are also based on packing strategies, but do not predict
the efficacy of packs. The syntactic packing heuristic [2] groups variables that linearly interact
together within small syntactic blocks. The syntactic packing strategy easily misses necessary
variables beyond the fixed code blocks. Other approaches construct packs by collecting semantically
dependent variables [16, 5]. Their approaches may be a reasonable choice to analyze moderate-sized
programs. However, they can generate useless packs or large packs containing useless variables
in complicated programs because they do not care for the impact of packs. Furthermore, those
approaches cannot construct compact packs along different calling contexts.

8.3. Scalable Relational Analysis

Localization [1] and sparse analysis [11] for relational analysis are orthogonal to our approach.
Localization safely removes irrelevant parts of abstract memories when analyzing specific code
blocks such as procedure bodies. Sparse analysis skips unnecessary propagation of semantic
elements on control flows, in addition to localization. The approaches are applicable with any
context selector and packing configuration so that our selective analysis complements those
techniques.

9. CONCLUSION

We propose a selective conjunction of context-sensitivity and the octagon relational analysis
toward cost-effective global analysis. The existing selective X-sensitive approach is limited to a
single sensitivity and a naive combination is prohibitively impractical. To address the issue, we
propose a selective analysis that applies context-sensitive and relational reasoning only when those
sensitivities help prove the desired properties. Furthermore, we provide a practical pre-analysis that
handles the huge sensitivities instead of naively combining the existing pre-analyses. For 8 open-
source C programs, our approach proves 8 times more queries while reducing the time consumption
of the analysis by 73.1% compared to the existing syntactic heuristic-based octagon relational
analysis.

ACKNOWLEDGEMENTS

This work was partly supported by Samsung Research Funding Center of Samsung Electronics under Project
Number SRFC-IT1502-07 and Institute for Information & communications Technology Promotion(IITP)
grant funded by the Korea government(MSIP) (No.R0190-16-2011, Development of Vulnerability
Discovery Technologies for IoT Software Security), (No.B0717-16-0098, Development of homomorphic
encryption for DNA analysis and biometry authentication). This research was also supported by Basic
Science Research Program through the National Research Foundation of Korea(NRF) funded by the
Ministry of Science, ICT & Future Planning(NRF-2016R1C1B2014062) and BK21 Plus for Pioneers in
Innovative Computing (Dept. of Computer Science and Engineering, SNU) funded by National Research
Foundation of Korea(NRF) (21A20151113068).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

26 HEO ET AL.

REFERENCES

1. Eva Beckschulze, Stefan Kowalewski, and Jörg Brauer. Access-Based Localization for Octagons. Electronic Notes
in Theoretical Computer Science, 287(C):29–40, November 2012.

2. Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David
Monniaux, and Xavier Rival. A static analyzer for large safety-critical software. In PLDI, 2003.

3. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In POPL, 1977.

4. Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. J. Log. Comput., 1992.
5. Azadeh Farzan and Zachary Kincaid. Verification of parameterized concurrent programs by modular reasoning

about data and control. In POPL, pages 297–308, 2012.
6. Yongin Jhee, Minsik Jin, Yungbum Jung, Deokhwan Kim, Soonho Kong, Heejong Lee, Hakjoo

Oh, Daejun Park, and Kwangkeun Yi. Abstract interpretation + impure catalysts: Our Sparrow
experience. Presentation at the Workshop of the 30 Years of Abstract Interpretation, San Francisco,
http://ropas.snu.ac.kr/˜kwang/paper/30yai-08.pdf, 2008.

7. Ravi Mangal, Mayur Naik, and Hongseok Yang. A correspondence between two approaches to interprocedural
analysis in the presence of join. In ESOP, pages 513–533, 2014.

8. Zohar Manna, Stephen Ness, and Jean Vuillemin. Inductive methods for proving properties of programs. SIGACT
News, (14):27–50, January 1972.

9. Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):31–100, 2006.
10. Hakjoo Oh, Lucas Brutschy, and Kwangkeun Yi. Access analysis-based tight localization of abstract memories. In

VMCAI, 2011.
11. Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi. Design and implementation of sparse

global analyses for C-like languages. In PLDI, 2012.
12. Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. Selective context-sensitivity guided

by impact pre-analysis. In PLDI, 2014.
13. Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis. In Program Flow Analysis:

Theory and Applications, pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.
14. Olin Grigsby Shivers. Control-flow analysis of higher-order languages -or- taming lambda. PhD thesis, CMU,

1991.
15. Sparrow. http://ropas.snu.ac.kr/sparrow.
16. Arnaud Venet and Guillaume P. Brat. Precise and efficient static array bound checking for large embedded c

programs. In PLDI, 2004.

A. PROOF

A.1. Proof of Proposition 1

Proof
We show that

∀κ0 ∈ K∞(fid(c)).
(
lfpF](c, κ0)

)
xy

=F =⇒ ∀(K, π) ∈ S, κ ∈ K(fid(c)).
(
lfpF (c, κ)(π)

)
xy
6= +∞.

It is proved by Lemma 4 and 7:

∀κ0 ∈ K∞(fid(c)).
(
lfpF](c, κ0)

)
xy

=F

=⇒ ∀(K, π) ∈ S, κ ∈ K(fid(c)).
(
lfpF [(c, κ)(π)

)
xy

=F (Lemma 4)

=⇒ ∀(K, π) ∈ S, κ ∈ K(fid(c)).
(
lfpF (c, κ)(π)

)
xy
6= +∞. (Lemma 7)

We define auxiliary semantic function F [that is a selective context-sensitive and relational pre-analysis
with K and Π:

F [(X) = λX.X0 tNext[(X)

Next[is defined with JcK[and→K :

Next[(X)(c, κ) = JcK[
(⊔
{X(c0, κ0) | (c0, κ0)→K (c, κ)}

)
JcK[∈ O[→ O[is defined on O[= Π→ O] as the same extension as JcKΠ. We extends the definition of
use set U and value-flow relation (↪→) to U [and () as follows:.

U [(Π)(c, x, y) = {(x0, y0) | π ∈ Π ∧ o[∈ O[∧
(
JcK[(o[(π))

)
ij

=F ∧
(
JcK[(o[(π)\i0j0)

)
ij

= >V}

((c0, κ0), x0, y0) ((c, κ), x, y) iff
(c0, κ0)→K (c, κ) ∧ (x0, y0) ∈ U [(x, y)

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

SELECTIVE CONJUNCTION OF CONTEXT-SENSITIVITY AND OCTAGON DOMAIN 27

Lemma 4 (Pre-analysis Coincidence). Let (c, x, y) be a query. Let F] be the semantic function of the pre-
analysis. Let S be a set of sensitivity for context-selector and packing configuration derived from the pre-
analysis result. Let F [be the semantic function of the auxiliary pre-analysis.

∀κ0 ∈ K∞(fid(c)).
(
lfpF](c, κ0)

)
xy

=F

=⇒ ∀(K, π) ∈ S, κ ∈ K(fid(c)).
(
lfpF [

)
(c, κ)(π)xy =F

Proof
It is sufficient to show that, in the value-flow graph, query (c, x, y) is reachable from source (c0, x0) under the
full context-sensitivity if and only if (cq, xq) is reachable from (c0, x0) under the selective context-sensitivity
with K:

∀((c0, κ0), x0, y0) ∈ Φ(c,x,y),∃κ, κ′.
((c0, κ0), x0, y0) ↪→∗ ((c, κ), x, y) ⇐⇒ ((c0, κ

′
0), x0, y0) ∗((c, κ′), x, y)

• (=⇒) By Lemma 5.
• (⇐=) When ((c0, κ0), x0, y0) ∈ Φ(c,x,y), by the definition of Φ(c,x,y). When ((c0, κ0), x0, y0) 6∈

Φ(c,x,y), it is proven by the previous work [12].

Lemma 5.

∀((c0, κ0), x0, y0) ∈ Φ(c,x,y), ∃κ, κ′.
((c0, κ0), x0, y0) ↪→∗ ((c, κ), x, y) =⇒ ((c0, κ

′
0), x0, y0) ∗((c, κ′), x, y)

Proof
This simply amount to showing that:

∀0 ≤ i < n. ((ci, κi), xi, yi) ↪→ ((ci+1, κi+1), xi+1, yi+1)
=⇒ ((ci, κ

′
i), xi, yi) ((ci+1, κ

′
i+1), xi+1, yi+1)

where cn = c, κn = κ, xn = x, and yn = y. It is proved by the previous work [12],

∀0 ≤ i < n. (ci, κi)→K∞ (ci+1, κi+1) =⇒ (ci, κ
′
i)→K (ci+1, κ

′
i+1)

and by Lemma 6,

∀0 ≤ i < n. (xi, yi) ∈ U(ci+1, xi+1, yi+1) =⇒ (xi, yi) ∈ U [(Π)(ci+1, xi+1, yi+1)

Lemma 6.

∀0 ≤ i < n. (xi, yi) ∈ U(ci+1, xi+1, yi+1) =⇒ (xi, yi) ∈ U [(Π)(ci+1, xi+1, yi+1)

Proof
We consider the following cases:

1. When ci+1 is v := k:

• If v = xi+1 then, xi = yi = yi+1 by definition of U and Jv := kK]. By definition of Π, there
exists π ∈ Π such that xi, yi, xi+1, yi+1 ∈ π. Then, (xi, yi) ∈ U [(Π)(ci+1, xi+1, yi+1) by
definition of U [.

• if v = yi+1 then, similar to the first case.
• Otherwise, xi = xi+1 and yi = yi+1 by the definition of Jv := kK]. By definition of Π, there

exists π ∈ Π such that xi, yi, xi+1, yi+1 ∈ π. Then, (xi, yi) ∈ U [(Π)(ci+1, xi+1, yi+1) by
definition of U [.

2. When ci+1 is v := w + k:

• If v = xi+1 and w = yi+1 then, contradiction by the definition of U and Jv := w + kK].
• If v = yi+1 and w = xi+1 then, similar to the first case.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

28 HEO ET AL.

• If v = xi+1 and w 6= yi+1 then, w = xi and yi+1 = yi by definition of the Jv := w + kK].
By the definition of Π, there exists π ∈ Π such that xi, yi, xi+1, yi+1 ∈ π. Then, (xi, yi) ∈
U [(Π)(ci+1, xi+1, yi+1) by definition of U [.

• If v = yi+1 and w 6= xi+1 then, similar to the third case.
• Otherwise, xi = xi+1 and yi = yi+1 by the definition of Jv := w + kK]. By the definition of Π,

there exists π ∈ Π such that xi, yi, xi+1, yi+1 ∈ π. Then, (xi, yi) ∈ U [(Π)(ci+1, xi+1, yi+1)

by definition of U [.

3. When ci+1 is v := v + k:
xi = xi+1 and yi = yi+1 by the definition of Jv := v + kK] and U . By the definition of Π, there
exists π ∈ Π such that xi, yi, xi+1, yi+1 ∈ π. Then, (xi, yi) ∈ U [(Π)(ci+1, xi+1, yi+1) by definition
of U [.

4. When ci+1 is v :=?:

• If v = xi+1 or v = yi+1 then, contradiction by the definition of U and Jv :=?K].
• Otherwise, xi = xi+1 and yi = yi+1 by the definition of Jv :=?K]. By the definition of Π,

there exists π ∈ Π such that xi, yi, xi+1, yi+1 ∈ π. Then, (xi, yi) ∈ U [(Π)(ci+1, xi+1, yi+1)

by definition of U [.

5. When ci+1 is a guard the proofs are simply subsumed by the one of assignment. For example, the
semantics of Jx ≤ kK] is a sub-part of the one of Jx := kK].

Lemma 7.

∀(K, π) ∈ S, κ ∈ K(fid(c)).
(
lfpF [(c, κ)(π)

)
xy

=F =⇒
(
lfpF (c, κ)(π)

)
xy
6= +∞.

Proof(
lfpF [(c, κ)(π)

)
xy

=F =⇒
(
lfpF](c)

)
xy

=F (F [is an over-approximation of F])
=⇒

(
lfpF∞(c)

)
xy
6=∞ (by Lemma 2)

=⇒
(
lfpF (c, κ)(π)

)
xy
6= +∞ (F is an over-approximation of F∞)

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

SELECTIVE CONJUNCTION OF CONTEXT-SENSITIVITY AND OCTAGON DOMAIN 29

(
Jx := kK]↑(o

])
)
ij

= (o]
′
)• where o]

′
ij =

 min(o]
•
ij , o

]
ix, o

]
ix̄) (i = j̄, i 6∈ {x, x̄})

>V (i ∈ {x, x̄} or j ∈ {x, x̄})
o]
•
ij otherwise

(
Jx := y + kK]↑(o

])
)
ij

= (o]
′
)• where o]

′
ij =



min(o]
•
ij , o

]•
xj) (i = y, j 6∈ {x, x̄, y, ȳ})

min(o]
•
ij , o

]•
ix̄) (i 6∈ {x, x̄, y, ȳ}, j = ȳ)

min(o]
•
ij , o

]•
x̄j) (i = ȳ, j 6∈ {x, x̄, y, ȳ})

min(o]
•
ij , o

]•
ix) (i 6∈ {x, x̄, y, ȳ}, j = y)

min(o]
•
ij , o

]•
x̄x) (i = ȳ, j = y)

min(o]
•
ij , o

]•
xx̄) (i = y, j = ȳ)

>V (i ∈ {x, x̄} or j ∈ {x, x̄})
o]
•
ij otherwise

Jx := x+ kK]↑ = Jx := x− kK]

Jx := −x+ kK]↑ = Jx := −x+ kK]

Jx := −y + kK]↑ = Jx := yK]↑ ◦ Jx := −x+ kK]↑
Jx :=?K]↑(o

]) = if o]ij = >V where i ∈ {x, x̄}, j 6∈ {x, x̄} or i 6∈ {x, x̄}, j ∈ {x, x̄} then

o]
′ where o]′ij =

{
>V (i ∈ {x, x̄}, j ∈ {x, x̄})
o]ij otherwise

else ⊥]

Jx ≤ kK]↑ = (o]
′
)• where o]

′
ij =

 min(o]
•
ij , o

]
ix) (i = j̄, i 6∈ {x, x̄})

>V (i = x̄ or j = x)

o]
•
ij otherwise

J−x ≤ kK] = (o]
′
)• where o]

′
ij =

 min(o]
•
ij , o

]
ix̄) (i = j̄, i 6∈ {x, x̄})

>V (i = x or j = x̄)

o]
•
ij otherwise

(
Jx− y ≤ kK]↑(o])

)
ij

= (o]
′
)• where o]

′
ij =



min(o]
•
ij , o

]•
ix) (i 6∈ {x, x̄, y, ȳ}, j = y)

min(o]
•
ij , o

]•
yj) (i = x, j 6∈ {x, x̄, y, ȳ})

min(o]
•
ij , o

]•
x̄x) (i = ȳ, j = y)

min(o]
•
ij , o

]•
yȳ) (i = x, j = x̄)

>V (i = y, j = x or i = x̄, j = ȳ)

o]
•
ij otherwise

(
Jx+ y ≤ kK]↑(o])

)
ij

= (o]
′
)• where o]

′
ij =



min(o]
•
ij , o

]•
ȳj) (i = x, j 6∈ {x, x̄, y, ȳ})

min(o]
•
ij , o

]•
ix) (i 6∈ {x, x̄, y, ȳ}, j = ȳ)

min(o]
•
ij , o

]•
x̄x) (i = y, j = ȳ)

min(o]
•
ij , o

]•
ȳy) (i = x, j = x̄)

>V (i = ȳ, j = x or i = x̄, j = y)

o]
•
ij otherwise

(
J−x− y ≤ kK]↑(o])

)
ij

= (o]
′
)• where o]

′
ij =



min(o]
•
ij , o

]•
yj) (i = x̄, j 6∈ {x, x̄, y, ȳ})

min(o]
•
ij , o

]•
ix̄) (i 6∈ {x, x̄, y, ȳ}, j = y)

min(o]
•
ij , o

]•
xx̄) (i = ȳ, j = y)

min(o]
•
ij , o

]•
yȳ) (i = x̄, j = x)

>V (i = y, j = x̄ or i = x, j = ȳ)

o]
•
ij otherwise

Jx ≤?K]↑(o
]) = o]

Figure 6. Backward abstract semantics of primitive commands for pre-analysis.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

