
Effective Program Debloating via Reinforcement Learning
Kihong Heo∗

University of Pennsylvania, USA
kheo@cis.upenn.edu

Woosuk Lee∗
University of Pennsylvania, USA

Hanyang University, Korea
woosuk@cis.upenn.edu

Pardis Pashakhanloo
University of Pennsylvania, USA

pardisp@cis.upenn.edu

Mayur Naik
University of Pennsylvania, USA

mhnaik@cis.upenn.edu

ABSTRACT

Prevalent software engineering practices such as code reuse and
the “one-size-fits-all” methodology have contributed to significant
and widespread increases in the size and complexity of software.
The resulting software bloat has led to decreased performance and
increased security vulnerabilities.

We propose a system called Chisel to enable programmers to
effectively customize and debloat programs. Chisel takes as input a
program to be debloated and a high-level specification of its desired
functionality. The output is a reduced version of the program that
is correct with respect to the specification. Chisel significantly
improves upon existing program reduction systems by using a novel
reinforcement learning-based approach to accelerate the search for
the reduced program and scale to large programs.

Our evaluation on a suite of 10 widely used UNIX utility pro-
grams each comprising 13-90 KLOC of C source code demonstrates
that Chisel is able to successfully remove all unwanted functional-
ities and reduce attack surfaces. Compared to two state-of-the-art
program reducers C-Reduce and Perses, which time out on 6 pro-
grams and 2 programs respectively in 12 hours, Chisel runs up to
7.1x and 3.7x faster and finishes on all programs.

CCS CONCEPTS

• Security and privacy→ Software security engineering;

KEYWORDS

program debloating; reinforcement learning

ACM Reference Format:

Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018.
Effective Program Debloating via Reinforcement Learning. In 2018 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’18), Oc-
tober 15–19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3243734.3243838

∗The first two authors contributed equally to this work and are listed alphabetically.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243838

1 INTRODUCTION

Software has witnessed dramatic increases in size and complexity.
Prevalent software engineering practices are a key factor behind
this trend. For instance, these practices emphasize increasing de-
velopers’ productivity through code reuse. Moreover, they espouse
a “one-size-fits-all” methodology whereby many software features
are packaged into a reusable code module (e.g., a library) designed
to support diverse clients.

The resulting software bloat has led to decreased performance
and increased security vulnerabilities. Moreover, the abundance of
gadgets in common libraries allows attackers to execute arbitrary
algorithms without injecting any new code into the application.

Although software often contains extraneous features that are
seldom if ever used by average users, they are commonly included
without providing users with any practical or effective means to
disable or remove those features. The prevailing approach is to reim-
plement lightweight counterparts of existing programs. Examples
include web servers [10], databases [14], C/C++ libraries [7, 16], and
command-line utilities [3, 15], all of which were reimplemented to
target embedded platforms. However, this approach is only applica-
ble when source code is available, and requires significant manual
effort. In the context of mobile applications, app thinning [2] was
recently introduced for iOS apps to automatically detect the user’s
device type and only download relevant content for the specific
device. While a promising step towards addressing bloat, it requires
developers to tag their software to identify correspondences, which
has led to its sparing use even on iOS [2].

We set out to develop a practical system to enable programmers
to customize and debloat programs. The system takes as input a
program to be simplified and a high-level specification of its desired
functionality, and generates a minimized version of the program
that is correct with respect to the specification. We identified five
key criteria that such a system must satisfy to be effective:

• Minimality: Does the system trim code as aggressively as possible
while respecting the specification?
• Efficiency: Does the system efficiently find the minimized pro-
gram and does it scale to large programs?
• Robustness: Does the system avoid introducing new errors and
vulnerabilities in the generated program?
• Naturalness: Does the system produce debloated code that is
maintainable and extensible?
• Generality: Does the system handle a wide variety of different
kinds of programs and specifications?

https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/3243734.3243838

In this paper, we present a software debloating system named
Chisel that satisfies the above criteria. As depicted in Figure 1,
Chisel takes a program P to be minimized and a property test
function S that checks if a candidate program satisfies or violates
the property. The output is a minimized version P ′ of the program
that satisfies the property.

Chisel provides a formal guarantee on the minimality of the gen-
erated program, called 1-minimality [45], which has been shown to
suffice in the literature on program reduction [32, 36, 37]. The prop-
erty test function can be expensive to invoke; for instance, it may
involve compiling the candidate program and running it on a test
suite. The 1-minimality guarantee admits minimization algorithms
that in the worst case invoke the property test function a qua-
dratic number of times in the size of the input program. However,
even with this lesser guarantee than global minimality—which has
worst-case exponential behavior—it is challenging to scale to large
programs. Chisel overcomes this problem by avoiding generating
a large number of syntactically or semantically invalid candidate
programs during its search.

Chisel guarantees that the minimized program is correct with
respect to the given property and is therefore robust. It avoids
program transformations that could mangle the program or break
its naturalness [24]. Finally, it treats both the program and the
property as black-boxes, enabling it to be applicable to a wide
range of different kinds of programs and specifications.

On the other hand, state-of-the-art program reduction tools such
as C-Reduce [36] and Perses [37] do not satisfy all of the above
criteria. Like Chisel, both of these tools take a program to be
minimized and an arbitrary property test function, and return a
minimized version of the program. While C-Reduce satisfies the
same minimality and correctness criteria as Chisel, however, it
sacrifices efficiency, naturalness, and generality.C-Reduce is tightly
coupled with hand-crafted program transformation rules that are
tailored to C/C++. Since the rules are myopic, C-Reduce generates
a significant number of syntactically invalid candidates during its
search for a minimal version of the given program. Moreover, the
tool often generates unnatural code (see Section 5).

Perses also sacrifices efficiency and generality. Its reduction pro-
cess is syntax-guided, which enables it to overcome a limitation of
C-Reduce by avoiding generating syntactically invalid programs
during its search. However, the tool still suffers from limited scalabil-
ity by generating a large number of semantically invalid programs
during its search. The algorithm is unaware of semantic dependen-
cies between program elements (e.g., def-use relations of variables).
As a result, it often generates programs with semantic errors, such
as uninitialized variables. Also, the grammar-aware reduction can
be overly conservative in each reduction step and thereby less effi-
cient than C-Reduce. Lastly, Perses is not applicable when even
correct parsing is not feasible (e.g., for binary programs).

Our main technical insight to overcome the above limitations
of existing program reduction techniques is to accelerate program
reduction via reinforcement learning [38]. From repeated trial and
error, Chisel builds and refines a statistical model that determines
the likelihood of each candidate program’s passing the property test.
The model effectively captures semantic dependencies between pro-
gram elements and guides the search towards a desirable minimal
program. The learning method employed by Chisel is agnostic

Program

Learner

Statistical
Model

Spec

Reduced

Checker w.r.t.
&

Trimmer

hPi, Y/Ni
<latexit sha1_base64="qeEadSyTmwh0DjfaSI/3MTRRFqc=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tF8CAxEUGPBS+epIL9kCaUzXbSLm42YXcjlFAv/hUvHhTx6r/w5r9xm/agrQ8GHu/NMDMvTDlT2nW/rdLC4tLySnm1sra+sbllb+80VZJJCg2a8ES2Q6KAMwENzTSHdiqBxCGHVnh/OfZbDyAVS8StHqYQxKQvWMQo0Ubq2ns+J6LPAde77BjfnVxjXxZC1666jlsAzxNvSqpoinrX/vJ7Cc1iEJpyolTHc1Md5ERqRjmMKn6mICX0nvShY6ggMaggLz4Y4UOj9HCUSFNC40L9PZGTWKlhHJrOmOiBmvXG4n9eJ9PRRZAzkWYaBJ0sijKOdYLHceAek0A1HxpCqGTmVkwHRBKqTWgVE4I3+/I8aZ46nut4N2fVmjONo4z20QE6Qh46RzV0heqogSh6RM/oFb1ZT9aL9W59TFpL1nRmF/2B9fkDoYyVpQ==</latexit><latexit sha1_base64="qeEadSyTmwh0DjfaSI/3MTRRFqc=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tF8CAxEUGPBS+epIL9kCaUzXbSLm42YXcjlFAv/hUvHhTx6r/w5r9xm/agrQ8GHu/NMDMvTDlT2nW/rdLC4tLySnm1sra+sbllb+80VZJJCg2a8ES2Q6KAMwENzTSHdiqBxCGHVnh/OfZbDyAVS8StHqYQxKQvWMQo0Ubq2ns+J6LPAde77BjfnVxjXxZC1666jlsAzxNvSqpoinrX/vJ7Cc1iEJpyolTHc1Md5ERqRjmMKn6mICX0nvShY6ggMaggLz4Y4UOj9HCUSFNC40L9PZGTWKlhHJrOmOiBmvXG4n9eJ9PRRZAzkWYaBJ0sijKOdYLHceAek0A1HxpCqGTmVkwHRBKqTWgVE4I3+/I8aZ46nut4N2fVmjONo4z20QE6Qh46RzV0heqogSh6RM/oFb1ZT9aL9W59TFpL1nRmF/2B9fkDoYyVpQ==</latexit><latexit sha1_base64="qeEadSyTmwh0DjfaSI/3MTRRFqc=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tF8CAxEUGPBS+epIL9kCaUzXbSLm42YXcjlFAv/hUvHhTx6r/w5r9xm/agrQ8GHu/NMDMvTDlT2nW/rdLC4tLySnm1sra+sbllb+80VZJJCg2a8ES2Q6KAMwENzTSHdiqBxCGHVnh/OfZbDyAVS8StHqYQxKQvWMQo0Ubq2ns+J6LPAde77BjfnVxjXxZC1666jlsAzxNvSqpoinrX/vJ7Cc1iEJpyolTHc1Md5ERqRjmMKn6mICX0nvShY6ggMaggLz4Y4UOj9HCUSFNC40L9PZGTWKlhHJrOmOiBmvXG4n9eJ9PRRZAzkWYaBJ0sijKOdYLHceAek0A1HxpCqGTmVkwHRBKqTWgVE4I3+/I8aZ46nut4N2fVmjONo4z20QE6Qh46RzV0heqogSh6RM/oFb1ZT9aL9W59TFpL1nRmF/2B9fkDoYyVpQ==</latexit><latexit sha1_base64="qeEadSyTmwh0DjfaSI/3MTRRFqc=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tF8CAxEUGPBS+epIL9kCaUzXbSLm42YXcjlFAv/hUvHhTx6r/w5r9xm/agrQ8GHu/NMDMvTDlT2nW/rdLC4tLySnm1sra+sbllb+80VZJJCg2a8ES2Q6KAMwENzTSHdiqBxCGHVnh/OfZbDyAVS8StHqYQxKQvWMQo0Ubq2ns+J6LPAde77BjfnVxjXxZC1666jlsAzxNvSqpoinrX/vJ7Cc1iEJpyolTHc1Md5ERqRjmMKn6mICX0nvShY6ggMaggLz4Y4UOj9HCUSFNC40L9PZGTWKlhHJrOmOiBmvXG4n9eJ9PRRZAzkWYaBJ0sijKOdYLHceAek0A1HxpCqGTmVkwHRBKqTWgVE4I3+/I8aZ46nut4N2fVmjONo4z20QE6Qh46RzV0heqogSh6RM/oFb1ZT9aL9W59TFpL1nRmF/2B9fkDoYyVpQ==</latexit>

P
<latexit sha1_base64="94NP9F/GewP/gckWWLLVYv/Fvdw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgQkoigi4Lbly2YB/QBplMb9qxk0mYmQgl9AvcuFDErZ/kzr9x0mahrQcGDuecy9x7gkRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A0mt7nffUKleSzvzTRBP6IjyUPOqLFSq/lQrbl1dw6ySryC1KCAzX8NhjFLI5SGCap133MT42dUGc4EziqDVGNC2YSOsG+ppBFqP5svOiNnVhmSMFb2SUPm6u+JjEZaT6PAJiNqxnrZy8X/vH5qwhs/4zJJDUq2+ChMBTExya8mQ66QGTG1hDLF7a6EjamizNhuKrYEb/nkVdK5rHtu3Wtd1RoXRR1lOIFTOAcPrqEBd9CENjBAeIZXeHMenRfn3flYREtOMXMMf+B8/gCi+4y+</latexit><latexit sha1_base64="94NP9F/GewP/gckWWLLVYv/Fvdw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgQkoigi4Lbly2YB/QBplMb9qxk0mYmQgl9AvcuFDErZ/kzr9x0mahrQcGDuecy9x7gkRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A0mt7nffUKleSzvzTRBP6IjyUPOqLFSq/lQrbl1dw6ySryC1KCAzX8NhjFLI5SGCap133MT42dUGc4EziqDVGNC2YSOsG+ppBFqP5svOiNnVhmSMFb2SUPm6u+JjEZaT6PAJiNqxnrZy8X/vH5qwhs/4zJJDUq2+ChMBTExya8mQ66QGTG1hDLF7a6EjamizNhuKrYEb/nkVdK5rHtu3Wtd1RoXRR1lOIFTOAcPrqEBd9CENjBAeIZXeHMenRfn3flYREtOMXMMf+B8/gCi+4y+</latexit><latexit sha1_base64="94NP9F/GewP/gckWWLLVYv/Fvdw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgQkoigi4Lbly2YB/QBplMb9qxk0mYmQgl9AvcuFDErZ/kzr9x0mahrQcGDuecy9x7gkRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A0mt7nffUKleSzvzTRBP6IjyUPOqLFSq/lQrbl1dw6ySryC1KCAzX8NhjFLI5SGCap133MT42dUGc4EziqDVGNC2YSOsG+ppBFqP5svOiNnVhmSMFb2SUPm6u+JjEZaT6PAJiNqxnrZy8X/vH5qwhs/4zJJDUq2+ChMBTExya8mQ66QGTG1hDLF7a6EjamizNhuKrYEb/nkVdK5rHtu3Wtd1RoXRR1lOIFTOAcPrqEBd9CENjBAeIZXeHMenRfn3flYREtOMXMMf+B8/gCi+4y+</latexit><latexit sha1_base64="94NP9F/GewP/gckWWLLVYv/Fvdw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgQkoigi4Lbly2YB/QBplMb9qxk0mYmQgl9AvcuFDErZ/kzr9x0mahrQcGDuecy9x7gkRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A0mt7nffUKleSzvzTRBP6IjyUPOqLFSq/lQrbl1dw6ySryC1KCAzX8NhjFLI5SGCap133MT42dUGc4EziqDVGNC2YSOsG+ppBFqP5svOiNnVhmSMFb2SUPm6u+JjEZaT6PAJiNqxnrZy8X/vH5qwhs/4zJJDUq2+ChMBTExya8mQ66QGTG1hDLF7a6EjamizNhuKrYEb/nkVdK5rHtu3Wtd1RoXRR1lOIFTOAcPrqEBd9CENjBAeIZXeHMenRfn3flYREtOMXMMf+B8/gCi+4y+</latexit>

S
<latexit sha1_base64="Y2tc5smNXk7yLozq2MUnoalRNb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvHhs0X5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpHHUYQTOIVz8OAaanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fp4eMwQ==</latexit><latexit sha1_base64="Y2tc5smNXk7yLozq2MUnoalRNb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvHhs0X5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpHHUYQTOIVz8OAaanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fp4eMwQ==</latexit><latexit sha1_base64="Y2tc5smNXk7yLozq2MUnoalRNb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvHhs0X5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpHHUYQTOIVz8OAaanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fp4eMwQ==</latexit><latexit sha1_base64="Y2tc5smNXk7yLozq2MUnoalRNb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvHhs0X5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpHHUYQTOIVz8OAaanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fp4eMwQ==</latexit>

P
<latexit sha1_base64="94NP9F/GewP/gckWWLLVYv/Fvdw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgQkoigi4Lbly2YB/QBplMb9qxk0mYmQgl9AvcuFDErZ/kzr9x0mahrQcGDuecy9x7gkRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A0mt7nffUKleSzvzTRBP6IjyUPOqLFSq/lQrbl1dw6ySryC1KCAzX8NhjFLI5SGCap133MT42dUGc4EziqDVGNC2YSOsG+ppBFqP5svOiNnVhmSMFb2SUPm6u+JjEZaT6PAJiNqxnrZy8X/vH5qwhs/4zJJDUq2+ChMBTExya8mQ66QGTG1hDLF7a6EjamizNhuKrYEb/nkVdK5rHtu3Wtd1RoXRR1lOIFTOAcPrqEBd9CENjBAeIZXeHMenRfn3flYREtOMXMMf+B8/gCi+4y+</latexit><latexit sha1_base64="94NP9F/GewP/gckWWLLVYv/Fvdw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgQkoigi4Lbly2YB/QBplMb9qxk0mYmQgl9AvcuFDErZ/kzr9x0mahrQcGDuecy9x7gkRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A0mt7nffUKleSzvzTRBP6IjyUPOqLFSq/lQrbl1dw6ySryC1KCAzX8NhjFLI5SGCap133MT42dUGc4EziqDVGNC2YSOsG+ppBFqP5svOiNnVhmSMFb2SUPm6u+JjEZaT6PAJiNqxnrZy8X/vH5qwhs/4zJJDUq2+ChMBTExya8mQ66QGTG1hDLF7a6EjamizNhuKrYEb/nkVdK5rHtu3Wtd1RoXRR1lOIFTOAcPrqEBd9CENjBAeIZXeHMenRfn3flYREtOMXMMf+B8/gCi+4y+</latexit><latexit sha1_base64="94NP9F/GewP/gckWWLLVYv/Fvdw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgQkoigi4Lbly2YB/QBplMb9qxk0mYmQgl9AvcuFDErZ/kzr9x0mahrQcGDuecy9x7gkRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A0mt7nffUKleSzvzTRBP6IjyUPOqLFSq/lQrbl1dw6ySryC1KCAzX8NhjFLI5SGCap133MT42dUGc4EziqDVGNC2YSOsG+ppBFqP5svOiNnVhmSMFb2SUPm6u+JjEZaT6PAJiNqxnrZy8X/vH5qwhs/4zJJDUq2+ChMBTExya8mQ66QGTG1hDLF7a6EjamizNhuKrYEb/nkVdK5rHtu3Wtd1RoXRR1lOIFTOAcPrqEBd9CENjBAeIZXeHMenRfn3flYREtOMXMMf+B8/gCi+4y+</latexit><latexit sha1_base64="94NP9F/GewP/gckWWLLVYv/Fvdw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgQkoigi4Lbly2YB/QBplMb9qxk0mYmQgl9AvcuFDErZ/kzr9x0mahrQcGDuecy9x7gkRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo5TxbDNYhGrXkA1Ci6xbbgR2EsU0igQ2A0mt7nffUKleSzvzTRBP6IjyUPOqLFSq/lQrbl1dw6ySryC1KCAzX8NhjFLI5SGCap133MT42dUGc4EziqDVGNC2YSOsG+ppBFqP5svOiNnVhmSMFb2SUPm6u+JjEZaT6PAJiNqxnrZy8X/vH5qwhs/4zJJDUq2+ChMBTExya8mQ66QGTG1hDLF7a6EjamizNhuKrYEb/nkVdK5rHtu3Wtd1RoXRR1lOIFTOAcPrqEBd9CENjBAeIZXeHMenRfn3flYREtOMXMMf+B8/gCi+4y+</latexit>

S
<latexit sha1_base64="Y2tc5smNXk7yLozq2MUnoalRNb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvHhs0X5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpHHUYQTOIVz8OAaanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fp4eMwQ==</latexit><latexit sha1_base64="Y2tc5smNXk7yLozq2MUnoalRNb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvHhs0X5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpHHUYQTOIVz8OAaanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fp4eMwQ==</latexit><latexit sha1_base64="Y2tc5smNXk7yLozq2MUnoalRNb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvHhs0X5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpHHUYQTOIVz8OAaanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fp4eMwQ==</latexit><latexit sha1_base64="Y2tc5smNXk7yLozq2MUnoalRNb8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBg5REBD0WvHhs0X5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88TMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrcuq51a9xlWldpHHUYQTOIVz8OAaanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fp4eMwQ==</latexit>

hPi, ?i
<latexit sha1_base64="13u2w1MHJnhKPanXOIa7hnFDhXA=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL4tF8CAhEUFvFrx4rGBroQlhs520SzebsLsRSu3Bv+LFgyJe/Rve/Ddu0xy09cHA2/dm2JkXZZwp7brfVmVpeWV1rbpe29jc2t6xd/faKs0lhRZNeSo7EVHAmYCWZppDJ5NAkojDfTS8nvr3DyAVS8WdHmUQJKQvWMwo0UYK7QOfE9HngJshO8VX2JfFM7TrruMWwIvEK0kdlWiG9pffS2megNCUE6W6npvpYEykZpTDpObnCjJCh6QPXUMFSUAF42L/CT42Sg/HqTQlNC7U3xNjkig1SiLTmRA9UPPeVPzP6+Y6vgzGTGS5BkFnH8U5xzrF0zBwj0mgmo8MIVQysyumAyIJ1SaymgnBmz95kbTPHM91vNvzesMp46iiQ3SETpCHLlAD3aAmaiGKHtEzekVv1pP1Yr1bH7PWilXO7KM/sD5/AGQGlPo=</latexit><latexit sha1_base64="13u2w1MHJnhKPanXOIa7hnFDhXA=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL4tF8CAhEUFvFrx4rGBroQlhs520SzebsLsRSu3Bv+LFgyJe/Rve/Ddu0xy09cHA2/dm2JkXZZwp7brfVmVpeWV1rbpe29jc2t6xd/faKs0lhRZNeSo7EVHAmYCWZppDJ5NAkojDfTS8nvr3DyAVS8WdHmUQJKQvWMwo0UYK7QOfE9HngJshO8VX2JfFM7TrruMWwIvEK0kdlWiG9pffS2megNCUE6W6npvpYEykZpTDpObnCjJCh6QPXUMFSUAF42L/CT42Sg/HqTQlNC7U3xNjkig1SiLTmRA9UPPeVPzP6+Y6vgzGTGS5BkFnH8U5xzrF0zBwj0mgmo8MIVQysyumAyIJ1SaymgnBmz95kbTPHM91vNvzesMp46iiQ3SETpCHLlAD3aAmaiGKHtEzekVv1pP1Yr1bH7PWilXO7KM/sD5/AGQGlPo=</latexit><latexit sha1_base64="13u2w1MHJnhKPanXOIa7hnFDhXA=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL4tF8CAhEUFvFrx4rGBroQlhs520SzebsLsRSu3Bv+LFgyJe/Rve/Ddu0xy09cHA2/dm2JkXZZwp7brfVmVpeWV1rbpe29jc2t6xd/faKs0lhRZNeSo7EVHAmYCWZppDJ5NAkojDfTS8nvr3DyAVS8WdHmUQJKQvWMwo0UYK7QOfE9HngJshO8VX2JfFM7TrruMWwIvEK0kdlWiG9pffS2megNCUE6W6npvpYEykZpTDpObnCjJCh6QPXUMFSUAF42L/CT42Sg/HqTQlNC7U3xNjkig1SiLTmRA9UPPeVPzP6+Y6vgzGTGS5BkFnH8U5xzrF0zBwj0mgmo8MIVQysyumAyIJ1SaymgnBmz95kbTPHM91vNvzesMp46iiQ3SETpCHLlAD3aAmaiGKHtEzekVv1pP1Yr1bH7PWilXO7KM/sD5/AGQGlPo=</latexit><latexit sha1_base64="13u2w1MHJnhKPanXOIa7hnFDhXA=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL4tF8CAhEUFvFrx4rGBroQlhs520SzebsLsRSu3Bv+LFgyJe/Rve/Ddu0xy09cHA2/dm2JkXZZwp7brfVmVpeWV1rbpe29jc2t6xd/faKs0lhRZNeSo7EVHAmYCWZppDJ5NAkojDfTS8nvr3DyAVS8WdHmUQJKQvWMwo0UYK7QOfE9HngJshO8VX2JfFM7TrruMWwIvEK0kdlWiG9pffS2megNCUE6W6npvpYEykZpTDpObnCjJCh6QPXUMFSUAF42L/CT42Sg/HqTQlNC7U3xNjkig1SiLTmRA9UPPeVPzP6+Y6vgzGTGS5BkFnH8U5xzrF0zBwj0mgmo8MIVQysyumAyIJ1SaymgnBmz95kbTPHM91vNvzesMp46iiQ3SETpCHLlAD3aAmaiGKHtEzekVv1pP1Yr1bH7PWilXO7KM/sD5/AGQGlPo=</latexit>

P 0
<latexit sha1_base64="CjSsigLkDAxavLJv3DQI4Utgdm0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0hE0GPBi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t39QPTxq6SRTDJssEYnqhFSj4BKbhhuBnVQhjUOB7XB8O/PbT6g0T+SjmaQYxHQoecQZNVZ6aJz3qzXP9eYgq8QvSA0KNPrVr94gYVmM0jBBte76XmqCnCrDmcBppZdpTCkb0yF2LZU0Rh3k80un5MwqAxIlypY0ZK7+nshprPUkDm1nTM1IL3sz8T+vm5noJsi5TDODki0WRZkgJiGzt8mAK2RGTCyhTHF7K2EjqigzNpyKDcFffnmVtC5d33P9+6ta3S3iKMMJnMIF+HANdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fA/SM8Q==</latexit><latexit sha1_base64="CjSsigLkDAxavLJv3DQI4Utgdm0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0hE0GPBi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t39QPTxq6SRTDJssEYnqhFSj4BKbhhuBnVQhjUOB7XB8O/PbT6g0T+SjmaQYxHQoecQZNVZ6aJz3qzXP9eYgq8QvSA0KNPrVr94gYVmM0jBBte76XmqCnCrDmcBppZdpTCkb0yF2LZU0Rh3k80un5MwqAxIlypY0ZK7+nshprPUkDm1nTM1IL3sz8T+vm5noJsi5TDODki0WRZkgJiGzt8mAK2RGTCyhTHF7K2EjqigzNpyKDcFffnmVtC5d33P9+6ta3S3iKMMJnMIF+HANdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fA/SM8Q==</latexit><latexit sha1_base64="CjSsigLkDAxavLJv3DQI4Utgdm0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0hE0GPBi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t39QPTxq6SRTDJssEYnqhFSj4BKbhhuBnVQhjUOB7XB8O/PbT6g0T+SjmaQYxHQoecQZNVZ6aJz3qzXP9eYgq8QvSA0KNPrVr94gYVmM0jBBte76XmqCnCrDmcBppZdpTCkb0yF2LZU0Rh3k80un5MwqAxIlypY0ZK7+nshprPUkDm1nTM1IL3sz8T+vm5noJsi5TDODki0WRZkgJiGzt8mAK2RGTCyhTHF7K2EjqigzNpyKDcFffnmVtC5d33P9+6ta3S3iKMMJnMIF+HANdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fA/SM8Q==</latexit><latexit sha1_base64="CjSsigLkDAxavLJv3DQI4Utgdm0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0hE0GPBi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t39QPTxq6SRTDJssEYnqhFSj4BKbhhuBnVQhjUOB7XB8O/PbT6g0T+SjmaQYxHQoecQZNVZ6aJz3qzXP9eYgq8QvSA0KNPrVr94gYVmM0jBBte76XmqCnCrDmcBppZdpTCkb0yF2LZU0Rh3k80un5MwqAxIlypY0ZK7+nshprPUkDm1nTM1IL3sz8T+vm5noJsi5TDODki0WRZkgJiGzt8mAK2RGTCyhTHF7K2EjqigzNpyKDcFffnmVtC5d33P9+6ta3S3iKMMJnMIF+HANdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fA/SM8Q==</latexit>

Program

Figure 1: Overview of the Chisel system.

of the targeted programming language and specification since the
models are learned from simple vector representations of tried
candidate programs and their property test results.

We evaluate Chisel on a suite of 10 widely used UNIX utility
programs each comprising 13-90 KLOC of C source code. Chisel
efficiently converges to the desired minimal programs and outper-
forms existing program reduction tools. Compared to C-Reduce
and Perses, which time out on 6 programs and 2 programs respec-
tively in 12 hours, Chisel achieves up to 7.1x and 3.7x speedup and
finishes on all programs. It successfully trims out 6 known vulnera-
bilities (CVEs) in 10 programs and eliminates 66.2% of the available
gadgets on average. The robustness of the debloated programs is
further validated by running a state-of-the-art fuzzer AFL [1] for
three days. Furthermore, we also manually analyze the source code
of the generated program to confirm that any removed functionality
is as intended, and that desirable software engineering practices
such as modularity and locality are preserved.

In summary, this paper makes the following contributions.
• We propose a practical system Chisel to reduce the size and com-
plexity of software. It aims to remove unwanted functionalities
from existing programs to reduce their attack surfaces.
• We propose a general reinforcement learning framework for effi-
cient and scalable program reduction. Our algorithm is agnostic
of the targeted programming language and specification.
• We evaluate Chisel using a set of widely used UNIX utility pro-
grams. Our experiments demonstrate that it enables removing
existing known vulnerabilities and reducing attack surfaces with-
out introducing any new bugs.

2 MOTIVATING EXAMPLE

We illustrate how Chisel enables programmers to customize and
debloat programs using the example of a UNIX utility called tar.
Suppose we want to obtain a simplified version of tar to target
embedded platforms. There exists such a version of tar in a UNIX
utility package for embedded Linux called BusyBox [3]. The origi-
nal tar provides 97 command-line options, whereas its lightweight
counterpart in BusyBox only provides 8 options. We demonstrate
how to automatically obtain a program that has the same function-
ality as the BusyBox version by providing a simple and high-level

1 #!/bin/bash
2
3 function compile {
4 clang −o tar.debloat tar−1.14.c
5 return $?
6 }
7
8 function core {
9 # test 1: archiving multiple files
10 touch foo bar
11 ./tar.debloat cf foo.tar foo bar
12 rm foo bar
13 ./tar.debloat xf foo.tar
14 test −f foo −a −f bar || exit 1
15
16 # test 2: extracting from stdin
17 touch foo
18 ./tar.debloat cf foo.tar foo
19 rm foo
20 cat foo.tar | ./tar.debloat x
21 test −f foo || exit 1
22 ... #12 more tests that exercise the 8 target options
23 return 0
24 }
25
26 function non_core {
27 for test_script in ‘ls other_tests/∗.sh‘; do # for all optional test cases
28 { sh −x −e $test_script; } >& log
29 grep 'Segmentation fault' log && exit 1
30 done
31 return 0
32 }
33
34 compile || exit 1
35 core || exit 1
36 non_core || exit 1

Figure 2: Example test script for debloating tar.

specification to Chisel. We also show how such debloating can
lead to concise code and enhanced security. Lastly, we explain how
we can guarantee the robustness of the resulting program.

2.1 Specifying the Inputs to Chisel

First of all, we require the user to write a high-level specification to
describe desired features. Such a specification can be written as a
script program that takes a program source, compiles it, and checks
if input-output behaviors of the compiled program are desirable. If
any errors or inconsistencies are found during the steps, the script
program returns false; otherwise, it returns true.

Figure 2 depicts such a script program that can be used as a
specification. Recall that our goal is to obtain a program with the
same functionality as tar in BusyBox that provides core function-
alities of tar with 8 command-line options. The script comprises
three steps. In the first step, the first function compile is invoked
to check if a given source is compilable. If the program can be
compiled, the next function core checks if the program exhibits
the desired property. This step comprises 14 test cases that exercise
the 8 command-line options. For example, the first test case tries to
archive two files and extract files from the archive, and checks if

the correct files are extracted (line 14). The function returns success
only if the program passes all of the 14 tests. The last function
non_core serves to avoid introducing new errors by debloating. It
specifies the condition that the reduced program should at least not
crash on inputs that exercise undesired features (line 29). Without
this requirement, the reducer may arbitrarily remove code parts
for non-core functionalities, possibly making the reduced program
exploitable when a removed feature is invoked.

To write such a script, we need test cases that extensively ex-
ercise the whole functionalities of the target programs. Such test
cases can be obtained in various ways; automatic test generation
techniques or regression test suites by developers can be used. In
this example, we used the test suites written by developers of the
original program.

2.2 Result of Chisel vs. Other Approaches

Given the specification and the original version of tar comprising
45,778 LOC (13,227 statements), within 12 hours, Chisel generates
a simplified version comprising only 1,687 LOC (538 statements),
which is about 10% of the original size. The guided search by the
learned statistical model, detailed in Section 4, enables to efficiently
find a minimal solution. In contrast, the state-of-the-art program
reducers Perses [37] and C-Reduce [36] fail to find a minimal
program within 12 hours.

Figures 3 and 4 depict the reduced and the original versions
of tar, respectively. In the main function of the reduced version,
the code for handling command-line options has been simplified
compared to the original version since the reduced program sup-
ports fewer options. Besides main, two functions read_and and
safer_name_suffix are also simplified. In the original version,
the function read_and checks the header of a given input file and
provides an exception handling mechanism if the header is in an in-
valid form. If the header is valid, a function is invoked according to
the given command-line options. In the reduced version, the excep-
tion handling part is removed, and the program quietly terminates
if the header is invalid. Moreover, in the reduced version, function
safer_name_suffix is also significantly simplified by removing
the redundant branch.

Achieving the above program reduction is not straightforward
by using typical static or dynamic analyses alone. Static analysis
conservatively includes all the code parts since the actual command-
line options and the input file are unknown at compile time. Thus,
the static approach cannot remove any code in function read_and
because the value of variable status at line 29 is unknown. On
the other hand, dynamic reachability cannot be used to remove
any code in function safer_name_suffix. Because our test cases
do not exercise option ‘-P’, variable absolute_name is always set
to zero. As a result, the dynamic approach always covers the else
branch at line 9, and so it cannot remove the else branch starting
from line 9 that contains a security vulnerability discussed below.

2.3 Analyzing the Output of Chisel

We now describe two salient aspects of the reduced version of
tar generated by Chisel: removing a security vulnerability and
facilitating further validations.

1 /∗ Chisel: global variable declarations removed ∗/
2 struct tar_stat_info stat_info;
3
4 char ∗safer_name_suffix (char ∗file_name, int link_target) {
5 /∗ Chisel: code containing CVE removed ∗/
6 return file_name;
7 }
8
9 void extract_archive() {
10 char ∗file_name = safer_name_suffix(stat_info.file_name, 0);
11 /∗ Chisel: overwriting functionalities removed ∗/
12 }
13
14 void list_archive() { ... /∗ same as original ∗/ }
15
16 void read_and(void ∗(do_something)(void)) {
17 enum read_header status;
18 while (...) {
19 status = read_header();
20 switch (status) {
21 case HEADER_SUCCESS: (∗do_something)(); continue;
22 /∗ Chisel: unnecessary functionalities removed ∗/
23 default: break;
24 }
25 }
26 }
27
28 /∗ Supports only 8 options: −c, −f, −x, −v, −t, −O, −o, −k ∗/
29 int main(int argc, char ∗∗argv) {
30 int optchar;
31 while (optchar = getopt_long(argc, argv) != −1) {
32 switch (optchar) {
33 case 'x': read_and(&extract_archive); break;
34 case 't': read_and(&list_archive); break;
35 /∗ Chisel: unsupported options removed ∗/
36 }
37 }
38 ... /∗ same as original ∗/
39 }

Figure 3: Code snippet of debloated version of tar generated
by Chisel.

SecurityVulnerabilityRemoval. When tar extracts files from
an archive, by default it writes into files relative to the working
directory. That is because if an archive were generated by an un-
trusted user and contained malicious content with absolute paths,
that user could potentially write into any file owned by the one
who extracts from the archive.

However, handling relative paths poses a challenge when an
archive contains ‘../’ in its target pathname. Malicious content can
be written to any file by escaping the intended destination through
‘../’. To avoid this problem, tar 1.14 through 1.29 have a sanitiza-
tion mechanism implemented in the function safer_name_suffix
shown in Figure 4. The sanitizer changes a given pathname by
removing its prefix containing ‘../’, i.e., the new pathname is the
longest suffix without ‘../’. For example, pathname ‘a/../b’ be-
comes ‘b’ after sanitization.

Unfortunately, this sanitization is also flawed. A recently dis-
covered CVE [5] exploits a problem in sanitizing such file names.

If a target system is extracting an attacker supplied file, the vul-
nerability allows the attacker to gain file overwrite capability. A
realistic attack scenario [8] is as follows. Suppose a root user wants
to unknowingly download an archive file from a malicious server
and extract a message-of-the-day 1 file in the archive. The malicious
archive tar-poc.tar contains an entry whose member name is
‘etc/motd/../etc/shadow’. By typing the following command in
the root (/) directory, the root user intends to only extract a file
from the downloaded archive and write to ‘/etc/motd’.

$ tar xf tar-poc.tar etc/motd

By exploiting the vulnerability, the file ‘/etc/shadow’ is changed.
Note that ‘/etc/shadow’ should not be extracted when asking for
‘/etc/motd’. The ‘/etc/shadow’ file stores actual passwords in
encrypted format for users’ (including the root) accounts. Thus, in
the worst-case scenario, this vulnerability can lead to a full system
compromise.

The developers of tar fixed this issue by simply ignoring entries
whose pathname contains ‘../’ 2. Thus, subsequent versions of tar
skip extracting the entry ‘etc/motd/../etc/shadow’, and the CVE
is trivially disabled. On the other hand, this version also disallows
any benign use of ‘../’ that does not overwrite existing files.

In the reduced version by Chisel, this exploit is not reproducible,
albeit due to a different reason. Chisel removes the feature of
overwriting existing files (line 21) as well as the wrong sanitization
(line 10) since those features are not exercised as core functionalities
by the test script. As a result, in our version, the input archive files
can be extracted to the outside of the current working directory
with ‘../’, but existing files are not overwritten with malicious
content. Hence, the exploit is not possible in the reduced version.

Note that this reduced version cannot be obtained by simply
removing code not covered by the executions using the test-cases.
Since the variable absolute_names always holds 0 in our test cases,
only the else branch is taken. In other words, if we debloated the
program with a dynamic reachability-based method, the attacker
could still gain file overwrite capability.

Scope for Further Validation. Since the reduced programs
are typically very small, yet largely preserve their syntactic struc-
tures, the user can easily verify the differences. Sophisticated code
comparison tools can clearly show the reduction like the above
examples in Figures 3 and 4.

Furthermore, the reduced size and complexity also enable to
apply precise automated techniques. To check if the reduced version
introduces new bugs, existing program reasoning techniques (e.g.,
static/dynamic analysis, fuzzing, runtime monitoring mechanisms,
or verification) can be employed to improve correctness guarantees.
We analyzed the reduced tar program using static analysis and
random fuzzing.

Debloating makes it feasible to manually inspect the results of
static analysis. For example, Sparrow [13]—a static analyzer for
finding security bugs—generated only 19 alarms for the reduced
tar program within a second, as opposed to 1,290 alarms for the

1The file ‘/etc/motd’ on Unix systems contains a "message of the day" and is used to
send a common message to all users.
2http://git.savannah.gnu.org/cgit/tar.git/commit/?id=
7340f67b9860ea0531c1450e5aa261c50f67165d

http://git.savannah.gnu.org/cgit/tar.git/commit/?id=7340f67b9860ea0531c1450e5aa261c50f67165d
http://git.savannah.gnu.org/cgit/tar.git/commit/?id=7340f67b9860ea0531c1450e5aa261c50f67165d

1 int absolute_names;
2 int ignore_zeros_option;
3 struct tar_stat_info stat_info;
4
5 char ∗safer_name_suffix (char ∗file_name, int link_target) {
6 char ∗p;
7 if (absolute_names) {
8 p = file_name;
9 } else {
10 /∗ CVE−2016−6321 ∗/
11 /∗ Incorrect sanitization when "file_name" contains ".." ∗/
12 /∗ "p" points to the longest suffix of "file_name" without "../" ∗/
13 ...
14 }
15 ...
16 return p;
17 }
18
19 void extract_archive() {
20 char ∗file_name = safer_name_suffix(stat_info.file_name, 0);
21 /∗ Overwrite "file_name" if exists ∗/
22 ...
23 }
24
25 void list_archive() { ... }

26 void read_and(void ∗(do_something)(void)) {
27 while (...) {
28 enum read_header status = read_header();
29 switch (status) {
30 case HEADER_SUCCESS: (∗do_something)(); continue;
31 case HEADER_ZERO_BLOCK:
32 if (ignore_zeros_option) continue;
33 else break;
34 ...
35 default: break;
36 }
37 }
38 ...
39 }
40
41 /∗ Support all options: −x, −t, −P, −i, ... ∗/
42 int main(int argc, char ∗∗argv) {
43 int optchar;
44 while (optchar = getopt_long(argc, argv) != −1) {
45 switch (optchar) {
46 case 'x': read_and(&extract_archive); break;
47 case 't': read_and(&list_archive); break;
48 case 'P': absolute_names = 1; break;
49 case 'i': ignore_zeros_option = 1; break;
50 ...
51 }
52 }
53 ...
54 }

Figure 4: Code snippet of the original version of tar.

original. After manual inspection, we concluded that all of the 19
alarms are false.

The debloated program can also be efficiently tested by random
testing tools like fuzzers.We ran the AFL tool [1] on the reduced tar
program and it did not find any failure-inducing inputs even within
three days. This provides improved confidence in the correctness
of the debloated program.

3 BACKGROUND

This section formalizes our setting for program debloating. It also
introduces the concepts of delta debugging and reinforcement learn-
ing upon which our program debloating approach is based.

3.1 Program Debloating

Let P ∈ P be a program where P is the universe of all possible
programs. A property is described as a property test function O :
P → B where B = {T, F} such that O(P) = T if P exhibits the
property, otherwise O(P) = F. Let |P | denote the size of P according
to an appropriate metric such as statements or tokens.

Given a program P and a property test function O such that
O(P) = T, the goal of program debloating is to search for a mini-
mized program P∗ ∈ P:

P∗ = arg min
P ′∈P

|P ′ | s .t . O(P ′) = T.

Achieving this goal, called global minimality, is NP-complete [45].
Therefore, the debloating problem in practice is relaxed to target a
more feasible goal called 1-minimality [45]. A program P∗ ∈ P is
called 1-minimal if any variant P ′ derived from P∗ by removing a
single element from P∗ does not pass the property test.

3.2 Delta Debugging

We next briefly introduce a program debloating algorithm using
Delta Debugging (DD for short) [45] in Algorithm 1. Given an input
program P and a property O, DD first converts the input program
into a list L of elements of arbitrary granularity such as tokens,
lines, or functions (line 1). The initial solution candidate and the
number of partitions n are set to L and 2, respectively (line 1 and
2). The current solution candidate L is split into n partitions (line
4). For each partition ui , the algorithm tests if the partition (resp.,
its complement) can preserve the property (lines 5 and 7). If so, it
removes the complement of ui (resp., ui) from L, and resumes the
main loop (lines 6 and 8). If a partition passes the property test, DD
repeats the process with the coarsest granularity by setting n ← 2.
If a complement passes the test, DD maintains the current level of
granularity by setting n ← n − 1. When none of the partitions and

Algorithm 1 Delta Debugging
Input: A program P
Input: A property test function O
Output: A minimal program P ′ such that O(P ′) = T
1: L ← A list representation of P
2: n ← 2
3: repeat
4: ⟨u1, . . . , un ⟩ ← split L into n partitions
5: if ∃i . O(ui) = T then

6: ⟨L, n ⟩ ← ⟨ui , 2⟩
7: else if ∃i . O(L \ ui) = T then
8: ⟨L, n ⟩ ← ⟨L \ ui , n − 1⟩
9: else

10: ⟨L, n ⟩ ← ⟨L, 2n ⟩
11: end if

12: until n ≤ |L |
13: return P ′ corresponding to L

1 int f1 () { return 0; }
2 int f2 () { return 1; }
3 int f3 () { return 1; }
4 int f4 () { return 1; }
5 int f5 () { return 1; }
6 int f6 () { return 1; }
7 int f7 () { return 1; }
8 int main () { return f1(); }

Figure 5: Example program.

their complements satisfy the property, DD tries to split each parti-
tion into halves. If each partition cannot be split (line 12), it returns
the program P ′ corresponding to the list of remaining elements
L (line 13). Otherwise, it resumes the main loop by splitting each
remaining partition into halves (line 10). The worst-case complexity
of this algorithm is O(|P |2).

We next illustrate the DD algorithm on an example which we
use in the rest of the paper as the running example.

Example 3.1. Consider the following simple C code in Figure 5.
Suppose the desired property is a process termination with 0, and
we are reducing the program with the granularity of function def-
initions. Therefore, the bare minimum is the program that only
contains function f1 and main. Although the minimal solution can
be obtained through a simple static analysis, we depict how the
DD algorithm works presuming a general setting where such an
analysis may not be available.

Figure 6 depicts iterations of the algorithm. In the first two it-
erations, the algorithm tries two partitions (n = 2), each of which
comprises the first four and the last four lines, respectively. Since
both partitions fail to preserve the property, the algorithm increases
the granularity by setting n = 4, and tries the four partitions, all
of which fail (iterations 3–6). The algorithm then tries comple-
ments of the four partitions. In the 8th iteration, the algorithm
finds a complement that preserves the property. By decrementing
n by 1, the algorithm maintains the current granularity and tries
n = 3 subsets of the current candidate. Since all of the three subsets

Figure 6: DD iterations.

(⟨f1, f2⟩, ⟨f5, f6⟩, ⟨f7, main⟩) were already tried, they are skipped.
Then it tries their complements, and another smaller program is
found in the 9th iteration. By decrementing n by 1 again, the al-
gorithm maintains the current granularity and tries n = 2 subsets
of the current candidate. Again, all of the two subsets (and their
complements) were already tried and failed. Now the algorithm
doubles the granularity (n ← 2 × 2) and tries four subsets (itera-
tions 10–13), all of which fail. Proceeding to their complements, in
the 15th iteration, another correct complement is found. Now it
tries n = 3 subsets and their complements of the program, and the
minimal solution is found in the last iteration.

3.3 Reinforcement Learning

Markov Decision Process. Markov decision process (MDP) is a
framework for sequential decision making problems [38]. An agent
is the learner and decision maker who interacts with the so called
environment. The agent gets a reward from the environment de-
pending on actions at each state. Formally, a MDP comprises the
following components:
• A set of states S whose initial state is denoted as s0 ∈ S.
• A set of actionsA and functionA : S → 2A specifying available
actions at each state.
• The transition model T : S × A → Pr(S) where T (s ′ | s,a)
denotes the probability of transition to state s ′ from state s taking
action a.
• The reward function R : S → Rwhere R(s) denotes the expected
reward at a state to s .

Solving MDP is to find a policy π : S → A that specifies a desirable
action that an agent takes in a given state. Usually, we are interested
in finding an optimal policy π∗ defined for each state s ∈ S as
follows:

π∗(s) = arg max
a∈A(s)

∑
s ′

T (s ′ | s,a)V ∗(s ′)

where V ∗(s) is the expected sum of rewards if the agent executes
an optimal policy starting in state s , which is recursively defined

as follows:

V ∗(s) = R(s) + γ
∑
s ′

T (s ′ | s,π∗(s))V ∗(s ′) (0 ≤ γ < 1)

where γ is a discount rate that determines the present value of
future rewards. If γ = 0, the agent is “myopic” in being concerned
only with maximizing immediate rewards. As γ approaches 1, the
return objective takes future rewards into account more strongly;
the agent becomes more farsighted.

Model-based Reinforcement Learning. Model-based reinforcement
learning (MBRL) is a technique to solve MDP under the guidance of
a model that predicts how the environment responds to the agent’s
action at each state [38]. MBRL learns such a model for transition
probabilities and rewards while solving of MDP. MBRL keeps track
of state transitions and actions to update the model based on the
obtained information. For each state, the agent estimates the ex-
pected sum of future rewards based on the model and the action
that maximizes the expected sum of future rewards.

4 OUR APPROACH

This section presents our learning-based program debloating
approach. We start by illustrating our algorithm on the running
example. We then present the algorithm by instantiating MDP
with delta debugging. Lastly, we explain how a statistical model is
learned during the delta debugging process.

4.1 Informal Description

Our key insight is to aim to quickly converge to a solution by pri-
oritizing candidates that are likely to pass the property test. Recall
that 11 of the 16 trials made by the DD algorithm in Example 3.1
failed the property test. We aim to avoid such a high fraction of
failed trials.

To this end, we use model-based reinforcement learning (MBRL).
In MBRL, a statistical model that approximates the world is main-
tained, and decisions are made assuming the model correctly ap-
proximates the world. The effects of the decisions are used to learn
more about the world. By using a MBRL approach in our setting,
from trial-and-error, we build and refine a statistical model that
determines the likelihood of passing the property test for each
candidate program.

Figure 7(a) depicts the iterations of our algorithm on Example 3.1.
In contrast to the naive DD algorithm that invokes the property
test 16 times (as already described in Figure 6), our algorithm only
requires invoking it 10 times.

We present in detail each iteration of our algorithm using the
standard decision tree model. In the first iteration, the current
program is set to the original program P , and the initial dataset
only contains a single example—that of P passing the property
test. The initial model learned from the dataset predicts that any
program can pass the test. Next, using the model, we prioritize
candidates, which are the sub-programs that may be generated
in the first iteration of DD—all the subsets of P whose size is 4
and their complements. The model arbitrarily chooses a subset
⟨f5, f6, f7, main⟩, and it fails the test. This result is added into the
dataset, and the leftmost decision tree in Figure 7(b) is learned.
Internal nodes represent conditions on the presence of specific

functions, and leaf nodes correspond to probabilities of a given
program’s passing the property test. The first tree predicts that
every program that contains f4 will pass the property test, and
that programs without f4 will fail. In the next iteration, the subset
⟨f1, f2, f3, f4⟩, which is predicted to pass the test, is chosen and
fails. This result is added into the dataset, and the next decision
tree is learned. Now the number of partitions is doubled because all
the subsets of size 4 (and their complements) failed the test. Now
the model predicts that main as well as f4 should be present in a
desirable program. In the next iteration, the complement of ⟨f1, f2⟩,
which is predicted to pass the test, is chosen and fails. This result is
added into the dataset, and the next decision tree is learned. Now
the model predicts that main as well as f2 should be present in a
desirable program. In this manner, after 6 iterations, the desirable
decision tree is learned; it regards programs containing both main
and f1 as desirable.

In the 7th and 8th iterations, the depicted two programs are
chosen, as they are the smallest among the available next candi-
dates. The program comprising main and f1 passes the property
test. The results are added into the dataset. However, because the
observations do not contradict the model, the model is not updated.
The available next candidates are ⟨f1⟩ and ⟨main⟩, both of which
fail the property test. By the last two iterations, it is confirmed that
removing a single element from the current program ⟨f1, main⟩
does not pass the property test. Therefore, the loop terminates and
the program ⟨f1, main⟩ is returned as the minimal one.

4.2 Markov Decision Process for Delta

Debugging

We formalize a Markov decision process (MDP) for delta debugging.
Given an original program P and a property test function O, the
goal of this MDP is to find a good policy that guides the delta
debugging algorithm towards a minimal program that satisfies O.
Throughout this section, we will use the terms program and list
interchangeably as DD views a program as a list of elements. Each
component of this MDP is defined as follows:

• State: The set of states S is a set of pairs of a current candidate
program and a current level of granularity (i.e., the number of
partitions) denoted P × N where P is the universe of all possible
programs. The initial state s0 is ⟨L, 2⟩ where L is a list represen-
tation of the original program P .
• Action: The set of actions A is the same as the set of states, and
the set of possible actions A(s) at a state s = ⟨L,n⟩ is defined as
follows:

A(s) = {⟨⟨u1⟩, 2⟩, · · · , ⟨⟨un⟩, 2⟩} (subsets)
∪ {⟨L \ u1,n − 1⟩, · · · , ⟨L \ un ,n − 1⟩} (complements)
∪ {⟨L, 2n⟩} (more granularity)

where u1, · · · ,un are n partitions of L. That is, the set A(s) con-
sists of all the possible pairs of a next candidate program and
granularity in the current state s (i.e., all the right hand sides
that may appear at lines 6, 8, and 10 during the iterations of
Algorithm 1).

(a) Iterations of our algorithm.

f4

1 0

main

f4

1 0

Y N
Y

Y N

N

main

f2

1 0

Y

Y N

N

main

f1

1 0

Y

Y N

N

(b) Decision trees learned after 1st, 2nd, 3rd, and 6th iterations, re-

spectively.

Figure 7: Running Example. After 6 iterations, the desirable

decision tree is learned. The minimal program is found in

10 iterations.

• Transition function: The transition functionT is defined as follows
(where s = ⟨L,n⟩, ⟨u1, · · · ,un⟩ are n partitions of L, and a = s ′):

T (s ′ | s,a) =


1 (s ′ = ⟨ui , 2⟩,O(ui) = T)
1 (s ′ = ⟨L \ ui ,n − 1⟩,O(L \ ui) = T)
1 (s ′ = ⟨L, 2n⟩,�i . O(ui) = T ∨ O(L \ ui) = T)
0 (otherwise)

In other words, a state transition occurs only when either a next
candidate program exhibits the desired property (the first two
cases) or more granularity in dividing programs is necessary
since none of them are desirable (the third case).
• Reward function: The reward function R is defined as follows:

R(⟨L,n⟩) =

{
1 (L is 1-minimal)
0 (otherwise)

A reward is given at state ⟨L,n⟩ iff L is a 1-minimal program.
Checking 1-minimality of L requires the test function O to guar-
antee that any variant derived from L by removing a single ele-
ment does not pass the property test while L does.
Intuitively, the goal of the MDP described above is to find a

1-minimal solution with the smallest number of transitions. Un-
fortunately, solving the MDP (i.e., learning the optimal policy) is
impractical. It requires a large number of invocations to the transi-
tion function T and reward function R defined using O that incurs
nontrivial computation cost.

To address this issue, we learn a sub-optimal policy using the
model-based reinforcement learning method [38]. We simultane-
ously learn a probabilistic modelM : P → [0, 1] that returns a
probability of a given candidate program’s passing the property
test function and derive a policy from the model. We will denote
T̂ and R̂ as approximations of T and R, respectively, and they are
defined usingM instead of O. The function T̂ is defined as follows
(where s = ⟨L,n⟩, ⟨u1, · · · ,un⟩ are n partitions of L, and a = s ′):

T̂ (s ′ | s,a) =


M(ui) / Ks,a (s′ = ⟨ui , 2⟩)
M(L \ ui) / Ks,a (s′ = ⟨L \ ui , n − 1⟩)(∏
⟨L′,n′⟩∈A(s)\s′

1 − M(L′)
)
/ Ks,a (s′ = ⟨L, 2n ⟩, 2n ≤ |L |)

0 (s′ = ⟨L, 2n ⟩, 2n > |L |)

where Ks,a is a normalization factor to make T̂ a probability distri-
bution. In the first two cases, the transition probability is defined
as the probability of a target subset or its complement’s passing the
property test. The other two cases are for increasing granularity.
Recall that we increase the granularity only when none of the next
candidates pass the property test. We compute the probability of
such a case as the probability of all the next candidate programs
failing the property test under the modelM. However, we may
be in a situation where the model misguides us to carelessly in-
crease the granularity until the algorithm terminates and return
a non-minimal program. To prevent such cases, the probability of
increasing the granularity is 0 if the current granularity is the finest
one, which is described in the last case of the above definition. By
doing so, the algorithm will try all the subsets and complements
before it terminates, guaranteeing 1-minimality.

The function R̂ is defined as follows:

R̂(⟨L,n⟩) =
∏

1≤i≤ |L |

(
1 −M(L \ ui)

)
where ⟨u1, · · · ,u |L |⟩ are |L| partitions of L. In other words, R̂(⟨L,n⟩)
is the probability of L’s being 1-minimal under the modelM.

Putting it all together, given approximated functions T̂ and R̂,
our goal is to learn the following optimal policy:

π̂ (s) = arg max
a∈A(s)

∑
s ′

T̂ (s ′ | s,a)V̂ (s ′) (1)

where V̂ is the expected sum of rewards under the policy π̂ :

V̂ (s) = R̂(s) + γ
∑
s ′

T̂ (s ′ | s, π̂ (s))V̂ (s ′) (0 ≤ γ < 1). (2)

V̂ can be computed via dynamic programming. Based on the policy,
an optimal action is chosen. State transitions and rewards caused
from the action will be used to refine the appoximations, which
will be used to also improve the policy again. In our evaluation,
we determined that γ = 0 yields the best performance (i.e., the
computation of V̂ only evaluates the immediate rewards).

4.3 Statistical Models

We describe how to learn the aforementioned model. Our goal is to
use the model to predict a probability of O(P) for a given program
P . We learn the model from data collected during the program
debloating process.

Feature Representation. Suppose a program P is represented as a
list of n elements:

⟨u1, . . . ,un⟩

Every sub-program P ′ of P is encoded as a binary feature vector of
length n by a feature encoding function F :

F (P ′) = ⟨b1, . . . ,bn⟩

wherebi is 1 ifui is included in the sub-program P ′, and 0 otherwise.
For example, the original program P itself is encoded as 1n and the
empty program is encoded as 0n .

Labeled Data. Each feature vector is labeled with a boolean value,
which is the result of the property test. For example, the feature
vector F (P) of a program P is O(P). Such labeled data are collected
from each trial during the DD process.

Learning a Model. We learn a statistical modelM using an off-
the-shelf supervised learning algorithm such as the decision tree
using the feature vectors and labels collected during the DD process.
Such learnedmodels predict a probability ofO(P) for a given feature
vector representation of P . The approximated versions of transition
(T̂) and reward (R̂) functions are defined by replacing O withM in
their original definitions.

4.4 Learning-based Program Debloating

We now describe our overall algorithm presented in Algorithm 2.
It is given an original program P to be reduced, a property test
function O, an off-the-shelf supervised learning algorithm L for
learning a model, and a feature encoding function F . The state s
denotes a current state throughout the algorithm.

At line 2, the state is initialized as the original program. At line 3,
a dataset is initialized to be a pair of a feature vector encoding
the original program (F (P) = 1 |P |) and its label (T). During the
iterations, the model is iteratively refined at line 5 using the updated
dataset. Themain loop (lines 4–13) iterates until the program cannot
be split any further. At each iteration of the loop, the approximated
policy is computed using the current model (line 6). Using the
learned policy, a next state is chosen (line 7), and its property
is checked (line 8). We change the current state only if the new
program still exhibits the property or we need more granularity
in dividing the input program (line 9). The result of the property
test is added into the dataset (line 12). The termination condition
(line 14) holds when all the sub-programs of the current program
have been tested. This algorithm guarantees 1-minimality thanks
to the design of T̂ described in Section 4.2.

5 EVALUATION

We experimentally evaluate Chisel by addressing the following
research questions:
Q1. Effectiveness: How effectively does Chisel reduce a given

program in terms of reduction quality and reduction time?
Q2. Security: Can Chisel trim out known vulnerabilities in the

programs? Can Chisel also reduce the potential attack surface
of the programs?

Q3. Robustness: How robust is the reduced program generated
by Chisel against new unseen inputs?

Algorithm 2 Learning-guided Delta Debugging

Input: A program P
Input: A property test function O
Input: A function L for learning the probabilistic model
Input: A feature encoding function F
Output: A minimal program P ′ such that O(P ′) = T
1: L ← A list representation of P
2: n ← 2 ▷ Initial state
3: D ← {⟨F (L), T⟩ } ▷ Initial dataset
4: repeat
5: M ← L(D) ▷ Learn a probabilistic model
6: Construct π̂ usingM and the equations (1) and (2)
7: ⟨L′, n′⟩ ← π̂ (⟨L, n ⟩) ▷ Next action from π̂ defined in the eq. (1)
8: ⋄ ← O(L′) ▷ ⋄ ∈ {T, F}
9: if ⋄ = T or n′ = 2n then

10: ⟨L, n ⟩ ← ⟨L′, n′⟩ ▷ State transition
11: end if

12: D ← D ∪ {⟨F (L′), ⋄⟩} ▷ Add the new data into the dataset
13: until n ≤ |L |
14: return P ′ corresponding to L

5.1 Setting

Implementation. We instantiate Chisel as a program reducer for
C programs based on the syntax-guided hierarchical delta debug-
ging algorithm [37]. Chisel first reduces global-level components
(i.e., global variable declarations, type definitions, function defi-
nitions, etc.) with the standard delta debugging algorithm, and
recursively applies it local-level components (i.e., assignments, if-
statements, while-statements, etc.). Once the local-level reduction
finishes, Chisel re-invokes the global-level reduction and continues
the whole process until a minimal version is found. Chisel simply
rejects nonsensical programs without invoking the test script by
using a simple dependency analysis, such as programs that do not
contain the main function, variable declarations, variable initializa-
tions, or return statements.

Chisel consists of 2,361 lines of OCaml code. We used an off-
the-shelf decision tree algorithm called FastDT3 to learn models.
We learn exact decision trees (i.e., we neither use boosting/bagging
nor bound the maximum depth of a tree). All experiments were
conducted on Linux machines with 3.0 GHz and 128 GB memory.

Benchmarks. We evaluate Chisel on a suite of 10 benchmark
programs from GNU packages. Table 1 shows the characteristics
of these programs. These programs were chosen because they are
open-source, widely used programs, each of them contains known
vulnerabilities reported as CVEs, and their manually reduced imple-
mentations are available in BusyBox [3], a lightweight UNIX utility
package for embedded systems. All the numbers are measured after
macro expansion.

Specifications. The desired features to preserve are chosen with
reference to the BusyBox implementations of the benchmarks. We
assume that the options supported by the default configuration of
BusyBox are the core functionalities of each program. In addition,
for security reasons, we forced the reduced programs not to result in
any undefined behaviors (not just crashes) such as buffer overrun or
uninitialized variable use even during the executions for non-core
3http://legacydirs.umiacs.umd.edu/~hal/FastDT

http://legacydirs.umiacs.umd.edu/~hal/FastDT

Table 1: Characteristics of the benchmark programs. LOC, #Func, and #Stmt reports the lines of code, the number of functions,

and the number of statements after macro expansion.

Program LOC #Func #Stmt CVE ID (CVSS Score) Vulnerability

bzip-1.05 18,688 108 6,532 CVE-2011-4089 (4.6) Executing arbitrary code by pre-creating a temporary directory.
chown-8.2 69,894 757 24,792 CVE-2017-18018 (1.9) Modifying the ownership of arbitrary files with the "-R -L" option.
date-8.21 75,898 878 26,147 CVE-2014-9471 (7.5) Executing arbitrary code with the "-d" option.
grep-2.19 49,011 432 12,138 CVE-2015-1345 (2.1) Causing a crash with the "-F" option.
gzip-1.2.4 13,223 93 4,118 CVE-2005-1228 (5.0) Writing to arbitrary directories with the "-N" option.
mkdir-5.2.1 28,202 263 10,679 CVE-2005-1039 (3.7) Modifying the ownership of arbitrary files with the "-m" option.
rm-8.4 89,694 764 27,695 CVE-2015-1865 (3.3) Modifying the ownership of arbitrary files with the "-rf" option.
sort-8.16 71,315 753 24,890 CVE-2013-0221 (4.3) Causing a crash with the "-d" or "-M" option.
tar-1.14 45,778 502 13,227 CVE-2016-6321 (5.0) Writing to arbitrary files.
uniq-8.16 64,915 665 22,086 CVE-2013-0222 (2.1) Causing a crash with a long input string.

Total 516,644 5,215 172,304

functionalities. To this end, we compiled the programs with the
sanitizer options [4] of Clang and monitored undefined behaviors at
runtime. To extensively exercise all the functionalities, we collected
test cases from the original source code repositories. In summary,
Chisel generates a reduced version of the program that satisfies
the following constraints:

• The reduced program must be compilable.
• The reduced program must have the same output as that of the
original program for the core functionalities.
• The reduced program must not yield undefined behaviors for the
non-core functionalities.

In addition, we set timeouts for each execution to 0.01–1 seconds
depending on the running cost of each benchmark. This is to prevent
running non-terminating programs that are generated whenChisel
introduces infinite loops.

Baseline Reducers. We compare Chisel to two state-of-the-art
program reduction approaches: C-Reduce [36] and Perses [37].
C-Reduce is an off-the-shelf C program reducer. We implemented
Perses based on the recent work of Sun et al. [37]. Like Chisel,
Perses also reduces programs with respect to the grammar, but
their reduction process is not guided by a probabilistic model. All
three tools are based on variants of delta-debugging and guarantee
that the reduced program is 1-minimal.

5.2 Effectiveness of Reduction

We first evaluate the effectiveness of Chisel in terms of reduction
size. We measured the number of statements of the original pro-
grams, the reduced versions by unreachable code removal, and the
ones generated by Chisel. For unreachable code removal, we re-
moved all the unreachable functions from the main function using
Sparrow [13], a static analyzer for C programs. Figure 8 shows
the results. First of all, the static analysis reduced the number of
statements from 172,304 to only 55,848 (32.4%). The reason for the
huge reduction even with static reachability is mainly due to a large
amount of library code that all the GNU CoreUtil programs share.
Among the statically reachable statements, Chisel further reduced
89.1% of statements and resulted in only 6,111.

bzip
-1

.0
5

ch
ow

n-8
.2

dat
e-

8.2
1

gre
p-2

.1
9

gzip
-1

.2
.4

m
kd

ir-
5.2

.1

rm
-8

.4

so
rt-

8.1
6

ta
r-1

.1
4

uniq
-8

.1
6

0

2,000

4,000

6,000

8,000

10,000

12,000

S
ta

te
m

en
ts

24,792 26,147 12,138 27,695 24,890 13,227 22,086

Original

Static

CHISEL

Figure 8: Effectiveness of Chisel in terms of reduction ratio.

Original reports the number of statements in the original

programs. Static and Chisel report those in the programs

after unreachable function removal by static analysis and

program debloating by Chisel, respectively.

Next, we evaluate the running time of Chisel compared to ex-
isting program reducers in Figure 9. Chisel effectively reduced
all of the benchmark programs within a timeout limit of 12 hours.
C-Reduce and Perses ran out of time for 6 programs and 2 pro-
grams respectively. These results show that our learning-based
approach is more efficient than the previous ones. Perses, which is
a purely grammar-based program reducer, is faster than C-Reduce,
which is basically a line-based reducer, by avoiding a large number
of trials with syntactic errors. Chisel outperforms both of these
tools on all the benchmarks because it not only avoids syntactic
errors, akin to Perses, but it also learns to avoid semantic errors.
As a result, Chisel runs up to 7.1x and 3.7x faster on average than
C-Reduce and Perses, respectively.

bzip
-1

.0
5

ch
ow

n-8
.2

dat
e-

8.2
1

gre
p-2

.1
9

gzip
-1

.2
.4

m
kd

ir-
5.2

.1

rm
-8

.4

so
rt-

8.1
6

ta
r-1

.1
4

uniq
-8

.1
6

0

2

4

6

8

10

12

H
ou

rs

T/O T/O T/O T/O T/O T/O

C-REDUCE

PERSES

CHISEL

Figure 9: Effectiveness of Chisel in terms of running time.

C-Reduce, Perses, and Chisel report the running time of

program debloating by each tool. The timeout (T/O) is set to

12 hours.

Table 2: Comparison to BusyBox. #Opt reports the number

of command-line options supported by the original GNU

programs and their BusyBox counterparts. #Stmt reports

the number of statements of each program.

GNU CoreUtil BusyBox Chisel

Program #Opt #Stmt #Opt #Stmt #Stmt

bzip-1.05 15 6,316 5 2,342 1,575
chown-8.2 15 3,422 2 141 186
date-8.21 11 4,100 7 107 913
grep-2.19 45 10,816 16 355 1,071
gzip-1.2.4 18 4,069 3 1,058 1,042
mkdir-5.2.1 7 1,746 2 94 142
rm-8.4 12 3,470 3 89 73
sort-8.16 31 7,206 7 89 379
tar-1.14 97 12,780 8 403 538
uniq-8.16 12 1,923 7 51 192

Total 263 55,848 60 4,729 6,111

We also justify the reduction of the benchmark programs by
comparing to their manually reduced implementations in the Busy-
Box package [3]. BusyBox is a single executable program that in-
vokes all the utilities via subcommands. In this experiment, we
excluded the large boilerplate code for parsing the subcommands
and only measured the size of each of the subprograms. Table 2
shows the comparison. In total, the original GNU CoreUtil pro-
grams implement 263 command-line options in 55,848 statements,
while BusyBox has 60 options and 4,729 statements. The reduced
programs by Chisel, which have the same options as BusyBox,
comprise 6,111 statements. Of the 10 programs, the BusyBox imple-
mentations have a fewer number of statements for 7 programs since

1 void initseq(struct seq∗ seq) {
2 seq−>count = 0;
3 seq−>lines = 0;
4 }
5
6 void system_join(FILE∗ fp1, FILE∗ fp2) {
7 struct seq seq1, seq2;
8 initseq(&seq1);
9 getseq(fp1, &seq1);
10 initseq(&seq2);
11 getseq(fp2, &seq2);
12 }
13
14 int main() {
15 fp1 = fopen(name[0], "r");
16 fp2 = fopen(name[1], "r");
17 system_join(fp1, fp2);
18 return 0;
19 }

(a)

1 struct seq seq1, seq2; // All fields are automatically initialized to 0
2
3 int main() {
4 fp1 = fopen(name[0], "r");
5 fp2 = fopen(name[1], "r");
6 getseq(fp1, &seq1);
7 getseq(fp2, &seq2);
8 return 0;
9 }

(b)

Figure 10: Code snippets from the reduced versions of join
from Chisel (a) and C-Reduce (b). Chisel generates a

program that preserves locality and modularity while C-

Reducemangles common software engineering practices.

humans write more optimized code. However, the aspects some-
times vary depending on their low-level algorithms, data-structures,
and programming styles. Overall, Chisel generates reasonable code
in terms of size.

Chisel yields more natural programs compared to existing re-
ducers such as C-Reduce, which considers programs as string input
data and whose primary goal is to minimize (possibly randomly
generated) crashing inputs (i.e., programs) to compilers. Therefore,
C-Reduce does not heed to common software engineering practices
such as modularity and locality. On the other hand, one of our goals
is to generate natural programs that humans can maintain and
extend. Figure 10 depicts an example. Notice that Chisel preserves
the structures of the original source code but C-Reduce breaks
modularity and locality.

The reader may wonder whether a naive approach to program
reduction based on runtime code coverage suffices in practice. To
justify the need to use Chisel, we also compared the runtime code
coverage of the original and reduced programs. This coverage is
computed using llvm-cov [11] with the default options.

Table 3: Dynamic code coverage. #Line and Coverage report

the number of executable lines and covered lines by the de-

fault functionality.

Original Reduced

Program #Lines Coverage #Lines Coverage

bzip-1.05 6,605 4,520 (68.4%) 1,586 1,568 (100.0%)
chown-8.2 3,895 1,580 (40.6%) 195 192 (98.5%)
date-8.21 4,403 2,007 (45.6%) 953 946 (99.3%)
grep-2.19 12,011 4,304 (35.8%) 1,118 961 (86.0%)
gzip-1.2.4 4,450 2,290 (51.5%) 1,079 1,054 (97.7%)
mkdir-5.2.1 1,841 562 (30.5%) 164 159 (97.0%)
rm-8.4 3,915 1,586 (40.5%) 75 75 (100.0%)
sort-8.16 7,836 3,451 (44.0%) 403 399 (99.0%)
tar-1.14 14,092 2,524 (17.9%) 527 510 (96.8%)
uniq-8.16 2,103 858 (40.8%) 205 204 (99.5%)

Total 61,151 23,681 (38.7%) 6,305 6,086 (96.5%)

Table 3 reports the number of executed lines for each benchmark.
In total, the execution of the original programs with the core func-
tionalities covered 23,681 (38.7%) lines among 61,151 executable
lines. That is much larger than the lines of executable code in the
reduced programs. Among 6,305 executable lines, the execution
of the reduced programs covered 6,086 (96.5%) lines. In summary,
these results show that Chisel can reduce significantly more code
than a naive approach based on dynamic code coverage.

5.3 Security Hardening

We next report upon the efficacy of Chisel in terms of security
hardening. We evaluate this aspect using three different means.
First, we inspected the reduced programs and checked whether
the known vulnerabilities are trimmed by Chisel. Second, we mea-
sured the reduction in the potential attack space by counting the
number of gadgets in the original and reduced programs using ROP-
Gadget [12]. Third, we ran a state-of-the-art static buffer overrun
analyzer, Sparrow [13], and inspected all reported alarms.

The results are shown in Table 4. Chisel successfully eliminated
the CVEs in 6 of the 10 programs. Of these, 4 CVEs were in non-
core functionalities, and more significantly, 2 CVEs were in core
functionalities (tar-1.14 and date-8.21). CVEs in core functionalities
can be typically removed when the vulnerabilities are triggered in
corner cases. As we saw in the case of tar-1.14 in Section 2, extract-
ing tar balls of files whose names contain ‘../’ is not common and
rarely exercised by test cases. In that case, Chisel can aggressively
remove such sub-functionalities handling corner cases even in core
functionalities (i.e., extracting tarball). Chisel could not eliminate
the CVEs in the remaining 4 programs because the vulnerabilities
are triggered with the core functionalities and are not easily fix-
able by reduction (e.g., race condition). In addition, Chisel reduced
potential attack surfaces by removing 66.2% of ROP gadgets on
average. The decreased size and complexity of the reduced pro-
grams also enable to apply more precise program checkers such
as static analyzers. The debloating reduced the number of buffer
overrun alarms reported by Sparrow by 95.4%, making it feasible

Table 4: Security hardening. CVE shows whether the known

CVEs are disabled by Chisel. #Gadgets and #Alarms report

the number of ROP gadgets and static analysis alarms of the

original and reduced programs.

#Gadgets #Alarms

Program CVE Original Reduced Original Reduced

bzip-1.05 ✗ 662 298 (55.0%) 1,991 33 (98.3%)
chown-8.2 ✓ 534 162 (69.7%) 47 1 (97.9%)
date-8.21 ✓ 479 233 (51.4%) 201 23 (88.6%)
grep-2.19 ✓ 1,065 411 (61.4%) 619 31 (95.0%)
gzip-1.2.4 ✓ 456 340 (25.4%) 326 128 (60.7%)
mkdir-5.2.1 ✗ 229 124 (45.9%) 43 2 (95.3%)
rm-8.4 ✗ 565 95 (83.2%) 48 0 (100.0%)
sort-8.16 ✓ 885 210 (76.3%) 673 5 (99.3%)
tar-1.14 ✓ 1,528 303 (80.2%) 1,290 19 (98.5%)
uniq-8.16 ✗ 349 109 (68.8%) 60 1 (98.3%)

Total 6,752 2,285 (66.2%) 5,298 243 (95.4%)

to manually inspect the few remaining alarms, all of which turned
out to be false upon inspection.

5.4 Robustness

We measured the robustness of the debloated programs by run-
ning a state-of-the-art fuzzer, AFL [1]. The programs were tested
with randomly generated command-line inputs and input files (if
necessary) by the fuzzer for three days.

In most cases, the debloated programs are robust since no crashes
were detected by fuzzing, despite the fact that the test cases writ-
ten by the original developers extensively exercise the whole pro-
grams. In addition, the runtime monitoring using the sanitizers
effectively filtered out erroneous programs during the debloating
process. In our experience, debloating without the sanitizers yields
problematic programs. Common bugs in C programs such as unini-
tialized variable or buffer-overflow cause the program to crash non-
deterministically, and thus the test script returns non-deterministic
results. However, the sanitizers catch such erroneous behaviors
during execution, enabling Chisel to avoid candidate programs
that contain such bugs.

Nevertheless, the reduced programs may fail with a new unseen
input. In our experience, random fuzzing can help enrich the test
script and derive robust programs. For grep-2.19 and bzip-1.0.5, the
fuzzer quickly found crashing inputs within 10 minutes. Figure 11
shows a typical example excerpted from the code of grep-2.19.
Initially, the shaded part was removed without any violation, since
all the test cases were small so that re-allocating a new memory
chunk was not needed. This initial program can be easily crashed
(i.e., by a buffer-overrun) by random inputs generated by the fuzzer.
In that case, we simply added the inputs into the test script; re-
ran Chisel; and re-ran the fuzzer. This simple feedback process
effectively improved the robustness of the resulting program. Unlike
program synthesis [22] that often overfits the inputs, program
reduction can easily find general enough programs if the original

1 struct dfa {
2 token∗ tokens; /∗ Tokens ∗/
3 int talloc; /∗ Token buffer size ∗/
4 int tindex; /∗ Token index ∗/
5 /∗ Omitted for clarity ∗/
6 };
7
8 struct dfa ∗dfa;
9
10 void add_tok (token t) {
11 if (dfa->talloc == dfa->tindex)
12 dfa->tokens = (token *) realloc (/* larger size */);
13 ∗(dfa−>tokens + (dfa−>tindex++)) = t;
14 }

Figure 11: Code snippet of grep-2.19. The shaded code was

removed in the first trial.

program is correct. As a result, the fuzzer did not find any crash
input for the next version for three days.

Summary of Results. In summary, Chisel efficiently reduced
large C programs, yielding up to 7.1x and 3.7x speedup compared
to C-Reduce and Perses, respectively. C-Reduce and Perses ran
out of time for 6 programs and 2 programs respectively among
the 10 benchmarks. Chisel removed 88.1% of code that is even
deemed reachable by a sophisticated static analysis. It could also
eliminate known CVEs and ROP gadgets. The robustness of the
reduced programs was empirically confirmed by running a static
analyzer and a random fuzzer.

6 THREATS TO VALIDITY

There are several threats to the validity of our approach. We outline
these next along with proposals to mitigate them.
• Non-determinism in test scripts: Chisel may misbehave if
the test script returns non-deterministic results. Such behaviors
are mainly caused by undefined behaviors (e.g., uninitialized vari-
ables) of candidate programs. As already described in Section 5.4,
we have partially solved this problem by using the sanitizers to
prevent undefined behaviors. However, the sanitizers may miss
erroneous behaviors if a target program uses external libraries
that are not compiled with the same protection schemes. This
problem can be mitigated by recompiling external libraries with
the same schemes, if the library sources are available. The other
reason for non-deterministic behaviors is caused by our method
to avoid non-terminating candidate programs. Some transfor-
mations may lead to non-terminations (e.g., removing loop ter-
mination conditions) and to reject such invalid programs, we
set a timeout limit. However, if such a limit is not large enough,
the test script may return non-deterministic results even for a
program of which execution time has a slight variance. This issue
can be mitigated by dynamically detecting and escaping infinite
loops [20] without setting timeout limits.
• Incompleteness of test inputs:We tested the robustness of the
resulting programs using the AFL fuzzer. However, our testing
may not be exhaustive enough if inputs are required to be in a
specific format, since we cannot provide a specific grammar to

AFL that could enable it to prune the search space by filtering
out ill-formed test inputs. We can mitigate this issue by using
grammar-based fuzzers [25, 44].
• Unsoundness of static analysis: We used the Sparrow static
analyzer to test robustness alongwithAFL. Although the analyzer
is sound with respect to most features of C programs, it may be
unsound if a target program exhibits tricky features such as
complex pointer arithmetic operations or complex control flows
caused by API functions of unknown semantics. In practice, since
designing a fully sound static analyzer is extremely challenging,
various static analyzers that are soundy [31] with respect to
different language features are used. We can mitigate the issue
by combining the results of multiple static analyzers that possess
different capabilities in this regard.

7 RELATEDWORK

Program Debloating. Recently, a large body of work has pro-
posed techniques to alleviate software bloat at different levels of
granularity. For coarse-grained (i.e., application-level) debloating,
Rastogi et al. [35] propose a technique to debloating application
containers running on Docker [6]. They decompose a complicated
container into multiple simpler containers with respect to a given
user-defined constraint. Their technique is based on dynamic anal-
ysis to obtain information about application behaviors.

Techniques have also been proposed for finer-grained debloat-
ing. JRed [28] and RedDroid [27] trim unused methods and classes
from Java and Android applications, respectively. Quach et al. [34]
present a debloating system that trims out unnecessary code during
compilation and loading. Their system reduces applications and
libraries based on function-level dependencies that are computed
using static analyses and training-based techniques. For each pro-
gram, all shared libraries and invoked functions are learned. Then,
at load time, the loader loads only these libraries and functions.

Compared to the previous approaches, Chisel is applicable to
program debloating at an even finer granularity such as statement-
level. Existing fine-grained approaches based on static analysis [28,
34] are conservative in that they remove only unreachable code.
Instead, our system aggressively removes redundant code even on
the execution paths.

There is also research on software bloat detection. Bhattacharya
et al. [19] introduce an analysis technique to detect sources of bloat
in Java applications. It aims to detect statements that are possible
sources of bloat when optional features are no longer required. It
starts by assuming that methods are potential features from which
an interaction graph is constructed. Next, the graph is traversed
by some heuristic rules to find likely sources of bloat. Finally, a
user must intervene for confirming the detected statements and
removing them. Unlike their work, our approach automatically
removes redundant code with respect to a given test script.

In addition to the work on software bloat detection, there is a
large body of research on detecting and reducing runtime memory
bloat [9, 33, 40–43]. These works have an orthogonal yet comple-
mentary goal to ours, since program debloating has the potential
to mitigate this problem to a certain extent through removing code
from execution paths.

Test-input Minimization. A large body of program reduction tech-
niques have been proposed in the context of test-input minimiza-
tion [23, 32, 36, 37]. Their goal is to minimize input programs that
cause compilers or interpreters to crash. Since they do not intend
the minimized source code to be executed and maintained, however,
the resulting programs are not carefully generated in terms of either
security or readability. For example, as already described in Sec-
tion 5, C-Reduce [36] often mangles common software engineering
practices. Our goal, on the other hand, is to reduce programs for
subsequent use by developers.

Existing techniques blindly search towards the minimal pro-
grams with only simple guidance from an oracle. Recently, re-
searchers have proposed efficient techniques that are aware of syn-
tactic structures of programs [23, 32, 37]. While such prior knowl-
edge allows avoiding a number of trials involving syntactically
ill-formed programs, these approaches produce a large number of
semantic errors, and they do not infer new knowledge from previ-
ous trials. In addition to avoiding syntactically invalid programs by
employing such an approach [37], our system avoids semantically
invalid programs by building a statistical model online based on
feedback from the oracle to guide the search. Our learning approach
is applicable to accelerate all the existing approaches including gen-
eral delta debugging [45] with unstructured inputs.

Program Slicing and Reachability Analysis. Program slicing is a
well-known technique for program reduction designed for specific
purposes such as debugging, testing, compiler optimization, soft-
ware customization, or program analysis [17, 18, 21, 26, 29, 30, 39].
A slice is a sub-part of a program that is relevant to the value at
some point of interest and is typically computed by static or dy-
namic dependencies. Our program debloating system aims at more
general properties of interest and does not require specifying se-
mantics and dependence relations. Moreover, our approach can be
used to obtain smaller programs than those obtainable by static
and dynamic slicing approaches.

In our experiments, we compared our approach with reachability
analysis rather than slicing for the following reason. A dynamic
slice contains all statements that affect the value of a target variable
at a program point for a particular execution of the program. How-
ever, it may be challenging to determine variables and program
points of interest from a high-level specification. Even if the user
were to manually annotate such targets, dynamic slicing may still
be ineffective for program debloating. For example, in Figure 4,
the output of "safer_name_suffix" actually depends on most of
the statements in the function. Therefore, it cannot remove the
vulnerability, in contrast to Chisel.

Static reachability computation often results in imprecise ap-
proximations of actually reachable code because of its inherent
limitations due to the undecidability of static analyses. It often
cannot effectively handle complex control flows such as indirect
procedure calls (e.g., setjmp / longjmp, function pointers, or reflec-
tion), complex conditionals, and pointer arithmetic. Our approach
is not limited by such problems. Dynamic reachability computation
can be more effective than the static approach in terms of code
size. However, our study demonstrates that our approach results in
programs even smaller than those based on dynamic reachability
(Section 5) with smaller attack surfaces.

8 CONCLUSION

We presented Chisel, a learning-based system for program debloat-
ing based on delta debugging. Our approach effectively removed
redundant code parts with respect to a given test script. The learned
probabilistic model accelerated the process to find the minimal pro-
gram. This debloating removed all vulnerabilities in the redundant
functionalities and significantly reduced potential attack surfaces.
Moreover, the reduced size and complexity enabled to apply precise
program reasoning techniques and manual inspection.

In the future, we plan to extend Chisel in several directions,
including investigating more expressive probabilistic models with
efficient incremental learning, designing various forms of specifi-
cation other than input-output examples, and applying to debloat
programs written in arbitrary languages such as binary.

ACKNOWLEDGMENTS

We thank Aravind Machiry for providing insightful suggestions to
evaluate the security and robustness of debloated programs. We
thank the anonymous reviewers and Brian Heath for providing
useful feedback to improve the paper. This research was supported
by ONR award #N00014-18-1-2021, DARPA award #FA8750-15-2-
0009, and NSF awards #1253867 and #1526270.

REFERENCES

[1] American Fuzzy Lop. http://lcamtuf.coredump.cx/afl.
[2] App Distribution Guide - App Thinning (iOS, tvOS, watchOS).

https://developer.apple.com/library/content/documentation/IDEs/Conceptual/
AppDistributionGuide/AppThinning/AppThinning.html.

[3] BusyBox. https://busybox.net.
[4] Clagn 7 Documentation. https://clang.llvm.org/docs/.
[5] CVE-2016-6321. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-

6321.
[6] Docker. https://www.docker.com.
[7] EGLIBC. http://www.eglibc.org.
[8] GNU Tar extract pathname bypass. http://seclists.org/fulldisclosure/2016/Oct/96.
[9] Introducing Android Oreo (Go edition). https://www.android.com/versions/

oreo-8-0/go-edition.
[10] Lighttpd. https://www.lighttpd.net.
[11] LLVM Commandline Guide. https://llvm.org/docs/CommandGuide/llvm-cov.

html.
[12] ROPGadget. http://shell-storm.org/project/ROPgadget.
[13] Sparrow. https://github.com/ropas/sparrow.
[14] SQLite. https://www.sqlite.org.
[15] Toybox. http://landley.net/toybox.
[16] uClibc-ng. https://uclibc-ng.org.
[17] Hiralal Agrawal and Joseph R. Horgan. 1990. Dynamic Program Slicing. In

Proceedings of the ACM SIGPLAN 1990 Conference on Programming Language
Design and Implementation (PLDI ’90).

[18] Samuel Bates and Susan Horwitz. 1993. Incremental Program Testing Using
Program Dependence Graphs. In Proceedings of the 20th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’93).

[19] Suparna Bhattacharya, Kanchi Gopinath, and Mangala Gowri Nanda. 2013. Com-
bining Concern Input with Program Analysis for Bloat Detection. In Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented Program-
ming Systems Languages & Applications (OOPSLA ’13).

[20] Michael Carbin, Sasa Misailovic, Michael Kling, and Martin C. Rinard. 2011. De-
tecting and Escaping Infinite Loops with Jolt. In Proceedings of the 25th European
Conference on Object-oriented Programming (ECOOP’11).

[21] Kostas Ferles, Valentin Wüstholz, Maria Christakis, and Isil Dillig. 2017. Failure-
directed Program Trimming. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE ’17).

[22] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis.
Foundations and Trends in Programming Languages (2017).

[23] Satia Herfert, Jibesh Patra, and Michael Pradel. 2017. Automatically Reducing
Tree-structured Test Inputs. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE ’17).

[24] Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su, and Premkumar T. De-
vanbu. 2016. On the Naturalness of Software. Communications of ACM (CACM)

http://lcamtuf.coredump.cx/afl
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/AppThinning/AppThinning.html
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/AppThinning/AppThinning.html
https://busybox.net
https://clang.llvm.org/docs/
https://www.docker.com
http://www.eglibc.org
http://seclists.org/fulldisclosure/2016/Oct/96
https://www.android.com/versions/oreo-8-0/go-edition
https://www.android.com/versions/oreo-8-0/go-edition
https://www.lighttpd.net
https://llvm.org/docs/CommandGuide/llvm-cov.html
https://llvm.org/docs/CommandGuide/llvm-cov.html
http://shell-storm.org/project/ROPgadget
https://github.com/ropas/sparrow
https://www.sqlite.org
http://landley.net/toybox
https://uclibc-ng.org

(2016).
[25] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code Frag-

ments. In Proceedings of the 21th USENIX Security Symposium (USENIX Security
’12’).

[26] Ranjit Jhala and Rupak Majumdar. 2005. Path Slicing. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’05).

[27] Yufei Jiang, Qinkun Bao, ShuaiWang, Xiao Liu, andDinghaoWu. 2018. RedDroid:
Android Application Redundancy Customization Based on Static Analysis. In
Proceedings of the 29th IEEE International Symposium on Software Reliability
Engineering (ISSRE ’18).

[28] Yufei Jiang, Dinghao Wu, and Peng Liu. 2016. Jred: Program Customization and
Bloatware Mitigation Based on Static Analysis. In Proceedings of the 40th IEEE
Computer Society International Conference Computer on Software and Applications
Conference (COMPSAC ’16).

[29] Yufei Jiang, Can Zhang, DinghaoWu, and Peng Liu. 2015. A Preliminary Analysis
and Case Study of Feature-Based Software Customization (Extended Abstract).
In IEEE International Conference on Software Quality, Reliability and Security (QRS
’15).

[30] Yufei Jiang, Can Zhang, DinghaoWu, and Peng Liu. 2016. Feature-Based Software
Customization: Preliminary Analysis, Formalization, and Methods. In 17th IEEE
International Symposium on High Assurance Systems Engineering (HASE ’16).

[31] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nel-
son Amaral, Bor-Yuh Evan Chang, Samuel Guyer, Uday Khedker, Anders Møller,
and Dimitrios Vardoulakis. 2015. In defense of soundiness: A manifesto. Com-
munications of the ACM (CACM) (2015).

[32] Ghassan Misherghi and Zhendong Su. 2006. HDD: Hierarchical Delta Debugging.
In Proceedings of the 28th International Conference on Software Engineering (ICSE
’06).

[33] Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, and Guoqing Xu. 2018. Under-
standing and Combating Memory Bloat in Managed Data-Intensive Systems.
ACM Transactions on Software Engineering and Methodology (TOSEM) (2018).

[34] Anh Quach, Aravind Prakash, and Lok-Kwong Yan. 2018. Debloating Software
through Piece-Wise Compilation and Loading. CoRR abs/1802.00759 (2018).
http://arxiv.org/abs/1802.00759

[35] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick
McDaniel. 2017. Cimplifier: Automatically Debloating Containers. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
’17).

[36] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case Reduction for C Compiler Bugs. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’12).

[37] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018.
Perses: Syntax-Guided Program Reduction. In Proceedings of the 40th Internal-
tional Conference on Software Engineering (ICSE ’18).

[38] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An Intro-
duction.

[39] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th International
Conference on Software Engineering (ICSE ’81).

[40] Guoqing Xu, Matthew Arnold, Nick Mitchell, Atanas Rountev, and Gary Sevitsky.
2009. Go with the Flow: Profiling Copies to Find Runtime Bloat. In Proceedings
of the 30th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’09).

[41] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schonberg,
and Gary Sevitsky. 2014. Scalable Runtime Bloat Detection Using Abstract
Dynamic Slicing. ACM Transactions on Software Engineering and Methodology
(TOSEM) (2014).

[42] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, and Gary Sevitsky.
2010. Software Bloat Analysis: Finding, Removing, and Preventing Performance
Problems in Modern Large-scale Object-oriented Applications. In Proceedings of
the FSE/SDP workshop on Future of software engineering research.

[43] Guoqing Xu and Atanas Rountev. 2010. Detecting Inefficiently-used Containers to
Avoid Bloat. In Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’10).

[44] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’11).

[45] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Transactions on Software Engineering (TSE) (2002).

http://arxiv.org/abs/1802.00759

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Specifying the Inputs to Chisel
	2.2 Result of Chisel vs. Other Approaches
	2.3 Analyzing the Output of Chisel

	3 Background
	3.1 Program Debloating
	3.2 Delta Debugging
	3.3 Reinforcement Learning

	4 Our Approach
	4.1 Informal Description
	4.2 Markov Decision Process for Delta Debugging
	4.3 Statistical Models
	4.4 Learning-based Program Debloating

	5 Evaluation
	5.1 Setting
	5.2 Effectiveness of Reduction
	5.3 Security Hardening
	5.4 Robustness

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

